@inproceedings{estevez-velarde-etal-2020-demo,
title = "Demo Application for the {A}uto{GOAL} Framework",
author = "Estevez-Velarde, Suilan and
Piad-Morffis, Alejandro and
Guti{\'e}rrez, Yoan and
Montoyo, Andres and
Mu{\~n}oz-Guillena, Rafael and
Almeida Cruz, Yudivi{\'a}n",
editor = "Ptaszynski, Michal and
Ziolko, Bartosz",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics: System Demonstrations",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics (ICCL)",
url = "https://aclanthology.org/2020.coling-demos.4",
doi = "10.18653/v1/2020.coling-demos.4",
pages = "18--22",
abstract = "This paper introduces a web demo that showcases the main characteristics of the AutoGOAL framework. AutoGOAL is a framework in Python for automatically finding the best way to solve a given task. It has been designed mainly for automatic machine learning(AutoML) but it can be used in any scenario where several possible strategies are available to solve a given computational task. In contrast with alternative frameworks, AutoGOAL can be applied seamlessly to Natural Language Processing as well as structured classification problems. This paper presents an overview of the framework{'}s design and experimental evaluation in several machine learning problems, including two recent NLP challenges. The accompanying software demo is available online (\url{https://autogoal.github.io/demo}) and full source code is provided under the MIT open-source license (\url{https://autogoal.github.io}).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="estevez-velarde-etal-2020-demo">
<titleInfo>
<title>Demo Application for the AutoGOAL Framework</title>
</titleInfo>
<name type="personal">
<namePart type="given">Suilan</namePart>
<namePart type="family">Estevez-Velarde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alejandro</namePart>
<namePart type="family">Piad-Morffis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoan</namePart>
<namePart type="family">Gutiérrez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andres</namePart>
<namePart type="family">Montoyo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rafael</namePart>
<namePart type="family">Muñoz-Guillena</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yudivián</namePart>
<namePart type="family">Almeida Cruz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Ptaszynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bartosz</namePart>
<namePart type="family">Ziolko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics (ICCL)</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces a web demo that showcases the main characteristics of the AutoGOAL framework. AutoGOAL is a framework in Python for automatically finding the best way to solve a given task. It has been designed mainly for automatic machine learning(AutoML) but it can be used in any scenario where several possible strategies are available to solve a given computational task. In contrast with alternative frameworks, AutoGOAL can be applied seamlessly to Natural Language Processing as well as structured classification problems. This paper presents an overview of the framework’s design and experimental evaluation in several machine learning problems, including two recent NLP challenges. The accompanying software demo is available online (https://autogoal.github.io/demo) and full source code is provided under the MIT open-source license (https://autogoal.github.io).</abstract>
<identifier type="citekey">estevez-velarde-etal-2020-demo</identifier>
<identifier type="doi">10.18653/v1/2020.coling-demos.4</identifier>
<location>
<url>https://aclanthology.org/2020.coling-demos.4</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>18</start>
<end>22</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Demo Application for the AutoGOAL Framework
%A Estevez-Velarde, Suilan
%A Piad-Morffis, Alejandro
%A Gutiérrez, Yoan
%A Montoyo, Andres
%A Muñoz-Guillena, Rafael
%A Almeida Cruz, Yudivián
%Y Ptaszynski, Michal
%Y Ziolko, Bartosz
%S Proceedings of the 28th International Conference on Computational Linguistics: System Demonstrations
%D 2020
%8 December
%I International Committee on Computational Linguistics (ICCL)
%C Barcelona, Spain (Online)
%F estevez-velarde-etal-2020-demo
%X This paper introduces a web demo that showcases the main characteristics of the AutoGOAL framework. AutoGOAL is a framework in Python for automatically finding the best way to solve a given task. It has been designed mainly for automatic machine learning(AutoML) but it can be used in any scenario where several possible strategies are available to solve a given computational task. In contrast with alternative frameworks, AutoGOAL can be applied seamlessly to Natural Language Processing as well as structured classification problems. This paper presents an overview of the framework’s design and experimental evaluation in several machine learning problems, including two recent NLP challenges. The accompanying software demo is available online (https://autogoal.github.io/demo) and full source code is provided under the MIT open-source license (https://autogoal.github.io).
%R 10.18653/v1/2020.coling-demos.4
%U https://aclanthology.org/2020.coling-demos.4
%U https://doi.org/10.18653/v1/2020.coling-demos.4
%P 18-22
Markdown (Informal)
[Demo Application for the AutoGOAL Framework](https://aclanthology.org/2020.coling-demos.4) (Estevez-Velarde et al., COLING 2020)
ACL
- Suilan Estevez-Velarde, Alejandro Piad-Morffis, Yoan Gutiérrez, Andres Montoyo, Rafael Muñoz-Guillena, and Yudivián Almeida Cruz. 2020. Demo Application for the AutoGOAL Framework. In Proceedings of the 28th International Conference on Computational Linguistics: System Demonstrations, pages 18–22, Barcelona, Spain (Online). International Committee on Computational Linguistics (ICCL).