@inproceedings{ananthram-etal-2020-event,
title = "Event-Guided Denoising for Multilingual Relation Learning",
author = "Ananthram, Amith and
Allaway, Emily and
McKeown, Kathleen",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.131/",
doi = "10.18653/v1/2020.coling-main.131",
pages = "1505--1512",
abstract = "General purpose relation extraction has recently seen considerable gains in part due to a massively data-intensive distant supervision technique from Soares et al. (2019) that produces state-of-the-art results across many benchmarks. In this work, we present a methodology for collecting high quality training data for relation extraction from unlabeled text that achieves a near-recreation of their zero-shot and few-shot results at a fraction of the training cost. Our approach exploits the predictable distributional structure of date-marked news articles to build a denoised corpus {--} the extraction process filters out low quality examples. We show that a smaller multilingual encoder trained on this corpus performs comparably to the current state-of-the-art (when both receive little to no fine-tuning) on few-shot and standard relation benchmarks in English and Spanish despite using many fewer examples (50k vs. 300mil+)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ananthram-etal-2020-event">
<titleInfo>
<title>Event-Guided Denoising for Multilingual Relation Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amith</namePart>
<namePart type="family">Ananthram</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Allaway</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kathleen</namePart>
<namePart type="family">McKeown</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>General purpose relation extraction has recently seen considerable gains in part due to a massively data-intensive distant supervision technique from Soares et al. (2019) that produces state-of-the-art results across many benchmarks. In this work, we present a methodology for collecting high quality training data for relation extraction from unlabeled text that achieves a near-recreation of their zero-shot and few-shot results at a fraction of the training cost. Our approach exploits the predictable distributional structure of date-marked news articles to build a denoised corpus – the extraction process filters out low quality examples. We show that a smaller multilingual encoder trained on this corpus performs comparably to the current state-of-the-art (when both receive little to no fine-tuning) on few-shot and standard relation benchmarks in English and Spanish despite using many fewer examples (50k vs. 300mil+).</abstract>
<identifier type="citekey">ananthram-etal-2020-event</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.131</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.131/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1505</start>
<end>1512</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Event-Guided Denoising for Multilingual Relation Learning
%A Ananthram, Amith
%A Allaway, Emily
%A McKeown, Kathleen
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F ananthram-etal-2020-event
%X General purpose relation extraction has recently seen considerable gains in part due to a massively data-intensive distant supervision technique from Soares et al. (2019) that produces state-of-the-art results across many benchmarks. In this work, we present a methodology for collecting high quality training data for relation extraction from unlabeled text that achieves a near-recreation of their zero-shot and few-shot results at a fraction of the training cost. Our approach exploits the predictable distributional structure of date-marked news articles to build a denoised corpus – the extraction process filters out low quality examples. We show that a smaller multilingual encoder trained on this corpus performs comparably to the current state-of-the-art (when both receive little to no fine-tuning) on few-shot and standard relation benchmarks in English and Spanish despite using many fewer examples (50k vs. 300mil+).
%R 10.18653/v1/2020.coling-main.131
%U https://aclanthology.org/2020.coling-main.131/
%U https://doi.org/10.18653/v1/2020.coling-main.131
%P 1505-1512
Markdown (Informal)
[Event-Guided Denoising for Multilingual Relation Learning](https://aclanthology.org/2020.coling-main.131/) (Ananthram et al., COLING 2020)
ACL
- Amith Ananthram, Emily Allaway, and Kathleen McKeown. 2020. Event-Guided Denoising for Multilingual Relation Learning. In Proceedings of the 28th International Conference on Computational Linguistics, pages 1505–1512, Barcelona, Spain (Online). International Committee on Computational Linguistics.