@inproceedings{zhao-etal-2020-robust,
title = "Robust Machine Reading Comprehension by Learning Soft labels",
author = "Zhao, Zhenyu and
Wu, Shuangzhi and
Yang, Muyun and
Chen, Kehai and
Zhao, Tiejun",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.248",
doi = "10.18653/v1/2020.coling-main.248",
pages = "2754--2759",
abstract = "Neural models have achieved great success on the task of machine reading comprehension (MRC), which are typically trained on hard labels. We argue that hard labels limit the model capability on generalization due to the label sparseness problem. In this paper, we propose a robust training method for MRC models to address this problem. Our method consists of three strategies, 1) label smoothing, 2) word overlapping, 3) distribution prediction. All of them help to train models on soft labels. We validate our approach on the representative architecture - ALBERT. Experimental results show that our method can greatly boost the baseline with 1{\%} improvement in average, and achieve state-of-the-art performance on NewsQA and QUOREF.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2020-robust">
<titleInfo>
<title>Robust Machine Reading Comprehension by Learning Soft labels</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhenyu</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuangzhi</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muyun</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kehai</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiejun</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural models have achieved great success on the task of machine reading comprehension (MRC), which are typically trained on hard labels. We argue that hard labels limit the model capability on generalization due to the label sparseness problem. In this paper, we propose a robust training method for MRC models to address this problem. Our method consists of three strategies, 1) label smoothing, 2) word overlapping, 3) distribution prediction. All of them help to train models on soft labels. We validate our approach on the representative architecture - ALBERT. Experimental results show that our method can greatly boost the baseline with 1% improvement in average, and achieve state-of-the-art performance on NewsQA and QUOREF.</abstract>
<identifier type="citekey">zhao-etal-2020-robust</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.248</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.248</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>2754</start>
<end>2759</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Robust Machine Reading Comprehension by Learning Soft labels
%A Zhao, Zhenyu
%A Wu, Shuangzhi
%A Yang, Muyun
%A Chen, Kehai
%A Zhao, Tiejun
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F zhao-etal-2020-robust
%X Neural models have achieved great success on the task of machine reading comprehension (MRC), which are typically trained on hard labels. We argue that hard labels limit the model capability on generalization due to the label sparseness problem. In this paper, we propose a robust training method for MRC models to address this problem. Our method consists of three strategies, 1) label smoothing, 2) word overlapping, 3) distribution prediction. All of them help to train models on soft labels. We validate our approach on the representative architecture - ALBERT. Experimental results show that our method can greatly boost the baseline with 1% improvement in average, and achieve state-of-the-art performance on NewsQA and QUOREF.
%R 10.18653/v1/2020.coling-main.248
%U https://aclanthology.org/2020.coling-main.248
%U https://doi.org/10.18653/v1/2020.coling-main.248
%P 2754-2759
Markdown (Informal)
[Robust Machine Reading Comprehension by Learning Soft labels](https://aclanthology.org/2020.coling-main.248) (Zhao et al., COLING 2020)
ACL
- Zhenyu Zhao, Shuangzhi Wu, Muyun Yang, Kehai Chen, and Tiejun Zhao. 2020. Robust Machine Reading Comprehension by Learning Soft labels. In Proceedings of the 28th International Conference on Computational Linguistics, pages 2754–2759, Barcelona, Spain (Online). International Committee on Computational Linguistics.