@inproceedings{ueyama-kano-2020-diverse,
title = "Diverse dialogue generation with context dependent dynamic loss function",
author = "Ueyama, Ayaka and
Kano, Yoshinobu",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.364/",
doi = "10.18653/v1/2020.coling-main.364",
pages = "4123--4127",
abstract = "Dialogue systems using deep learning have achieved generation of fluent response sentences to user utterances. Nevertheless, they tend to produce responses that are not diverse and which are less context-dependent. To address these shortcomings, we propose a new loss function, an Inverse N-gram loss (INF), which incorporates contextual fluency and diversity at the same time by a simple formula. Our INF loss can adjust its loss dynamically by a weight using the inverse frequency of the tokens' n-gram applied to Softmax Cross-Entropy loss, so that rare tokens appear more likely while retaining the fluency of the generated sentences. We trained Transformer using English and Japanese Twitter replies as single-turn dialogues using different loss functions. Our INF loss model outperformed the baselines of SCE loss and ITF loss models in automatic evaluations such as DIST-N and ROUGE, and also achieved higher scores on our human evaluations of coherence and richness."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ueyama-kano-2020-diverse">
<titleInfo>
<title>Diverse dialogue generation with context dependent dynamic loss function</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ayaka</namePart>
<namePart type="family">Ueyama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoshinobu</namePart>
<namePart type="family">Kano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Dialogue systems using deep learning have achieved generation of fluent response sentences to user utterances. Nevertheless, they tend to produce responses that are not diverse and which are less context-dependent. To address these shortcomings, we propose a new loss function, an Inverse N-gram loss (INF), which incorporates contextual fluency and diversity at the same time by a simple formula. Our INF loss can adjust its loss dynamically by a weight using the inverse frequency of the tokens’ n-gram applied to Softmax Cross-Entropy loss, so that rare tokens appear more likely while retaining the fluency of the generated sentences. We trained Transformer using English and Japanese Twitter replies as single-turn dialogues using different loss functions. Our INF loss model outperformed the baselines of SCE loss and ITF loss models in automatic evaluations such as DIST-N and ROUGE, and also achieved higher scores on our human evaluations of coherence and richness.</abstract>
<identifier type="citekey">ueyama-kano-2020-diverse</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.364</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.364/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>4123</start>
<end>4127</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Diverse dialogue generation with context dependent dynamic loss function
%A Ueyama, Ayaka
%A Kano, Yoshinobu
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F ueyama-kano-2020-diverse
%X Dialogue systems using deep learning have achieved generation of fluent response sentences to user utterances. Nevertheless, they tend to produce responses that are not diverse and which are less context-dependent. To address these shortcomings, we propose a new loss function, an Inverse N-gram loss (INF), which incorporates contextual fluency and diversity at the same time by a simple formula. Our INF loss can adjust its loss dynamically by a weight using the inverse frequency of the tokens’ n-gram applied to Softmax Cross-Entropy loss, so that rare tokens appear more likely while retaining the fluency of the generated sentences. We trained Transformer using English and Japanese Twitter replies as single-turn dialogues using different loss functions. Our INF loss model outperformed the baselines of SCE loss and ITF loss models in automatic evaluations such as DIST-N and ROUGE, and also achieved higher scores on our human evaluations of coherence and richness.
%R 10.18653/v1/2020.coling-main.364
%U https://aclanthology.org/2020.coling-main.364/
%U https://doi.org/10.18653/v1/2020.coling-main.364
%P 4123-4127
Markdown (Informal)
[Diverse dialogue generation with context dependent dynamic loss function](https://aclanthology.org/2020.coling-main.364/) (Ueyama & Kano, COLING 2020)
ACL