@inproceedings{rohanian-hough-2020-framing,
title = "Re-framing Incremental Deep Language Models for Dialogue Processing with Multi-task Learning",
author = "Rohanian, Morteza and
Hough, Julian",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.43/",
doi = "10.18653/v1/2020.coling-main.43",
pages = "497--507",
abstract = "We present a multi-task learning framework to enable the training of one universal incremental dialogue processing model with four tasks of disfluency detection, language modelling, part-of-speech tagging and utterance segmentation in a simple deep recurrent setting. We show that these tasks provide positive inductive biases to each other with optimal contribution of each one relying on the severity of the noise from the task. Our live multi-task model outperforms similar individual tasks, delivers competitive performance and is beneficial for future use in conversational agents in psychiatric treatment."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rohanian-hough-2020-framing">
<titleInfo>
<title>Re-framing Incremental Deep Language Models for Dialogue Processing with Multi-task Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Morteza</namePart>
<namePart type="family">Rohanian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">Hough</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a multi-task learning framework to enable the training of one universal incremental dialogue processing model with four tasks of disfluency detection, language modelling, part-of-speech tagging and utterance segmentation in a simple deep recurrent setting. We show that these tasks provide positive inductive biases to each other with optimal contribution of each one relying on the severity of the noise from the task. Our live multi-task model outperforms similar individual tasks, delivers competitive performance and is beneficial for future use in conversational agents in psychiatric treatment.</abstract>
<identifier type="citekey">rohanian-hough-2020-framing</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.43</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.43/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>497</start>
<end>507</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Re-framing Incremental Deep Language Models for Dialogue Processing with Multi-task Learning
%A Rohanian, Morteza
%A Hough, Julian
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F rohanian-hough-2020-framing
%X We present a multi-task learning framework to enable the training of one universal incremental dialogue processing model with four tasks of disfluency detection, language modelling, part-of-speech tagging and utterance segmentation in a simple deep recurrent setting. We show that these tasks provide positive inductive biases to each other with optimal contribution of each one relying on the severity of the noise from the task. Our live multi-task model outperforms similar individual tasks, delivers competitive performance and is beneficial for future use in conversational agents in psychiatric treatment.
%R 10.18653/v1/2020.coling-main.43
%U https://aclanthology.org/2020.coling-main.43/
%U https://doi.org/10.18653/v1/2020.coling-main.43
%P 497-507
Markdown (Informal)
[Re-framing Incremental Deep Language Models for Dialogue Processing with Multi-task Learning](https://aclanthology.org/2020.coling-main.43/) (Rohanian & Hough, COLING 2020)
ACL