@inproceedings{dopierre-etal-2020-shot,
title = "Few-shot Pseudo-Labeling for Intent Detection",
author = "Dopierre, Thomas and
Gravier, Christophe and
Subercaze, Julien and
Logerais, Wilfried",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.438/",
doi = "10.18653/v1/2020.coling-main.438",
pages = "4993--5003",
abstract = "In this paper, we introduce a state-of-the-art pseudo-labeling technique for few-shot intent detection. We devise a folding/unfolding hierarchical clustering algorithm which assigns weighted pseudo-labels to unlabeled user utterances. We show that our two-step method yields significant improvement over existing solutions. This performance is achieved on multiple intent detection datasets, even in more challenging situations where the number of classes is large or when the dataset is highly imbalanced. Moreover, we confirm this results on the more general text classification task. We also demonstrate that our approach nicely complements existing solutions, thereby providing an even stronger state-of-the-art ensemble method."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dopierre-etal-2020-shot">
<titleInfo>
<title>Few-shot Pseudo-Labeling for Intent Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Dopierre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christophe</namePart>
<namePart type="family">Gravier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julien</namePart>
<namePart type="family">Subercaze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wilfried</namePart>
<namePart type="family">Logerais</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we introduce a state-of-the-art pseudo-labeling technique for few-shot intent detection. We devise a folding/unfolding hierarchical clustering algorithm which assigns weighted pseudo-labels to unlabeled user utterances. We show that our two-step method yields significant improvement over existing solutions. This performance is achieved on multiple intent detection datasets, even in more challenging situations where the number of classes is large or when the dataset is highly imbalanced. Moreover, we confirm this results on the more general text classification task. We also demonstrate that our approach nicely complements existing solutions, thereby providing an even stronger state-of-the-art ensemble method.</abstract>
<identifier type="citekey">dopierre-etal-2020-shot</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.438</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.438/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>4993</start>
<end>5003</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Few-shot Pseudo-Labeling for Intent Detection
%A Dopierre, Thomas
%A Gravier, Christophe
%A Subercaze, Julien
%A Logerais, Wilfried
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F dopierre-etal-2020-shot
%X In this paper, we introduce a state-of-the-art pseudo-labeling technique for few-shot intent detection. We devise a folding/unfolding hierarchical clustering algorithm which assigns weighted pseudo-labels to unlabeled user utterances. We show that our two-step method yields significant improvement over existing solutions. This performance is achieved on multiple intent detection datasets, even in more challenging situations where the number of classes is large or when the dataset is highly imbalanced. Moreover, we confirm this results on the more general text classification task. We also demonstrate that our approach nicely complements existing solutions, thereby providing an even stronger state-of-the-art ensemble method.
%R 10.18653/v1/2020.coling-main.438
%U https://aclanthology.org/2020.coling-main.438/
%U https://doi.org/10.18653/v1/2020.coling-main.438
%P 4993-5003
Markdown (Informal)
[Few-shot Pseudo-Labeling for Intent Detection](https://aclanthology.org/2020.coling-main.438/) (Dopierre et al., COLING 2020)
ACL
- Thomas Dopierre, Christophe Gravier, Julien Subercaze, and Wilfried Logerais. 2020. Few-shot Pseudo-Labeling for Intent Detection. In Proceedings of the 28th International Conference on Computational Linguistics, pages 4993–5003, Barcelona, Spain (Online). International Committee on Computational Linguistics.