@inproceedings{chen-etal-2020-modeling-evolution,
title = "Modeling Evolution of Message Interaction for Rumor Resolution",
author = "Chen, Lei and
Wei, Zhongyu and
Li, Jing and
Zhou, Baohua and
Zhang, Qi and
Huang, Xuanjing",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.561/",
doi = "10.18653/v1/2020.coling-main.561",
pages = "6377--6387",
abstract = "Previous work for rumor resolution concentrates on exploiting time-series characteristics or modeling topology structure separately. However, how local interactive pattern affects global information assemblage has not been explored. In this paper, we attempt to address the problem by learning evolution of message interaction. We model confrontation and reciprocity between message pairs via discrete variational autoencoders which effectively reflects the diversified opinion interactivity. Moreover, we capture the variation of message interaction using a hierarchical framework to better integrate information flow of a rumor cascade. Experiments on PHEME dataset demonstrate our proposed model achieves higher accuracy than existing methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2020-modeling-evolution">
<titleInfo>
<title>Modeling Evolution of Message Interaction for Rumor Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhongyu</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Baohua</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Previous work for rumor resolution concentrates on exploiting time-series characteristics or modeling topology structure separately. However, how local interactive pattern affects global information assemblage has not been explored. In this paper, we attempt to address the problem by learning evolution of message interaction. We model confrontation and reciprocity between message pairs via discrete variational autoencoders which effectively reflects the diversified opinion interactivity. Moreover, we capture the variation of message interaction using a hierarchical framework to better integrate information flow of a rumor cascade. Experiments on PHEME dataset demonstrate our proposed model achieves higher accuracy than existing methods.</abstract>
<identifier type="citekey">chen-etal-2020-modeling-evolution</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.561</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.561/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>6377</start>
<end>6387</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling Evolution of Message Interaction for Rumor Resolution
%A Chen, Lei
%A Wei, Zhongyu
%A Li, Jing
%A Zhou, Baohua
%A Zhang, Qi
%A Huang, Xuanjing
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F chen-etal-2020-modeling-evolution
%X Previous work for rumor resolution concentrates on exploiting time-series characteristics or modeling topology structure separately. However, how local interactive pattern affects global information assemblage has not been explored. In this paper, we attempt to address the problem by learning evolution of message interaction. We model confrontation and reciprocity between message pairs via discrete variational autoencoders which effectively reflects the diversified opinion interactivity. Moreover, we capture the variation of message interaction using a hierarchical framework to better integrate information flow of a rumor cascade. Experiments on PHEME dataset demonstrate our proposed model achieves higher accuracy than existing methods.
%R 10.18653/v1/2020.coling-main.561
%U https://aclanthology.org/2020.coling-main.561/
%U https://doi.org/10.18653/v1/2020.coling-main.561
%P 6377-6387
Markdown (Informal)
[Modeling Evolution of Message Interaction for Rumor Resolution](https://aclanthology.org/2020.coling-main.561/) (Chen et al., COLING 2020)
ACL
- Lei Chen, Zhongyu Wei, Jing Li, Baohua Zhou, Qi Zhang, and Xuanjing Huang. 2020. Modeling Evolution of Message Interaction for Rumor Resolution. In Proceedings of the 28th International Conference on Computational Linguistics, pages 6377–6387, Barcelona, Spain (Online). International Committee on Computational Linguistics.