@inproceedings{hazem-etal-2020-termeval,
title = "{T}erm{E}val 2020: {TALN}-{LS}2{N} System for Automatic Term Extraction",
author = "Hazem, Amir and
Bouhandi, M{\'e}rieme and
Boudin, Florian and
Daille, Beatrice",
editor = "Daille, B{\'e}atrice and
Kageura, Kyo and
Terryn, Ayla Rigouts",
booktitle = "Proceedings of the 6th International Workshop on Computational Terminology",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.computerm-1.13/",
pages = "95--100",
language = "eng",
ISBN = "979-10-95546-57-3",
abstract = "Automatic terminology extraction is a notoriously difficult task aiming to ease effort demanded to manually identify terms in domain-specific corpora by automatically providing a ranked list of candidate terms. The main ways that addressed this task can be ranged in four main categories: (i) rule-based approaches, (ii) feature-based approaches, (iii) context-based approaches, and (iv) hybrid approaches. For this first TermEval shared task, we explore a feature-based approach, and a deep neural network multitask approach -BERT- that we fine-tune for term extraction. We show that BERT models (RoBERTa for English and CamemBERT for French) outperform other systems for French and English languages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hazem-etal-2020-termeval">
<titleInfo>
<title>TermEval 2020: TALN-LS2N System for Automatic Term Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amir</namePart>
<namePart type="family">Hazem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mérieme</namePart>
<namePart type="family">Bouhandi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Florian</namePart>
<namePart type="family">Boudin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beatrice</namePart>
<namePart type="family">Daille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th International Workshop on Computational Terminology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Béatrice</namePart>
<namePart type="family">Daille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyo</namePart>
<namePart type="family">Kageura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ayla</namePart>
<namePart type="given">Rigouts</namePart>
<namePart type="family">Terryn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-57-3</identifier>
</relatedItem>
<abstract>Automatic terminology extraction is a notoriously difficult task aiming to ease effort demanded to manually identify terms in domain-specific corpora by automatically providing a ranked list of candidate terms. The main ways that addressed this task can be ranged in four main categories: (i) rule-based approaches, (ii) feature-based approaches, (iii) context-based approaches, and (iv) hybrid approaches. For this first TermEval shared task, we explore a feature-based approach, and a deep neural network multitask approach -BERT- that we fine-tune for term extraction. We show that BERT models (RoBERTa for English and CamemBERT for French) outperform other systems for French and English languages.</abstract>
<identifier type="citekey">hazem-etal-2020-termeval</identifier>
<location>
<url>https://aclanthology.org/2020.computerm-1.13/</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>95</start>
<end>100</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TermEval 2020: TALN-LS2N System for Automatic Term Extraction
%A Hazem, Amir
%A Bouhandi, Mérieme
%A Boudin, Florian
%A Daille, Beatrice
%Y Daille, Béatrice
%Y Kageura, Kyo
%Y Terryn, Ayla Rigouts
%S Proceedings of the 6th International Workshop on Computational Terminology
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-57-3
%G eng
%F hazem-etal-2020-termeval
%X Automatic terminology extraction is a notoriously difficult task aiming to ease effort demanded to manually identify terms in domain-specific corpora by automatically providing a ranked list of candidate terms. The main ways that addressed this task can be ranged in four main categories: (i) rule-based approaches, (ii) feature-based approaches, (iii) context-based approaches, and (iv) hybrid approaches. For this first TermEval shared task, we explore a feature-based approach, and a deep neural network multitask approach -BERT- that we fine-tune for term extraction. We show that BERT models (RoBERTa for English and CamemBERT for French) outperform other systems for French and English languages.
%U https://aclanthology.org/2020.computerm-1.13/
%P 95-100
Markdown (Informal)
[TermEval 2020: TALN-LS2N System for Automatic Term Extraction](https://aclanthology.org/2020.computerm-1.13/) (Hazem et al., CompuTerm 2020)
ACL