@inproceedings{chen-etal-2020-corpus,
title = "A Corpus of Very Short Scientific Summaries",
author = "Chen, Yifan and
Polajnar, Tamara and
Batchelor, Colin and
Teufel, Simone",
editor = "Fern{\'a}ndez, Raquel and
Linzen, Tal",
booktitle = "Proceedings of the 24th Conference on Computational Natural Language Learning",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.conll-1.12",
doi = "10.18653/v1/2020.conll-1.12",
pages = "153--164",
abstract = "We present a new summarisation task, taking scientific articles and producing journal table-of-contents entries in the chemistry domain. These are one- or two-sentence author-written summaries that present the key findings of a paper. This is a first look at this summarisation task with an open access publication corpus consisting of titles and abstracts, as input texts, and short author-written advertising blurbs, as the ground truth. We introduce the dataset and evaluate it with state-of-the-art summarisation methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2020-corpus">
<titleInfo>
<title>A Corpus of Very Short Scientific Summaries</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yifan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tamara</namePart>
<namePart type="family">Polajnar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Colin</namePart>
<namePart type="family">Batchelor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simone</namePart>
<namePart type="family">Teufel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 24th Conference on Computational Natural Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Raquel</namePart>
<namePart type="family">Fernández</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Linzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a new summarisation task, taking scientific articles and producing journal table-of-contents entries in the chemistry domain. These are one- or two-sentence author-written summaries that present the key findings of a paper. This is a first look at this summarisation task with an open access publication corpus consisting of titles and abstracts, as input texts, and short author-written advertising blurbs, as the ground truth. We introduce the dataset and evaluate it with state-of-the-art summarisation methods.</abstract>
<identifier type="citekey">chen-etal-2020-corpus</identifier>
<identifier type="doi">10.18653/v1/2020.conll-1.12</identifier>
<location>
<url>https://aclanthology.org/2020.conll-1.12</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>153</start>
<end>164</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Corpus of Very Short Scientific Summaries
%A Chen, Yifan
%A Polajnar, Tamara
%A Batchelor, Colin
%A Teufel, Simone
%Y Fernández, Raquel
%Y Linzen, Tal
%S Proceedings of the 24th Conference on Computational Natural Language Learning
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F chen-etal-2020-corpus
%X We present a new summarisation task, taking scientific articles and producing journal table-of-contents entries in the chemistry domain. These are one- or two-sentence author-written summaries that present the key findings of a paper. This is a first look at this summarisation task with an open access publication corpus consisting of titles and abstracts, as input texts, and short author-written advertising blurbs, as the ground truth. We introduce the dataset and evaluate it with state-of-the-art summarisation methods.
%R 10.18653/v1/2020.conll-1.12
%U https://aclanthology.org/2020.conll-1.12
%U https://doi.org/10.18653/v1/2020.conll-1.12
%P 153-164
Markdown (Informal)
[A Corpus of Very Short Scientific Summaries](https://aclanthology.org/2020.conll-1.12) (Chen et al., CoNLL 2020)
ACL
- Yifan Chen, Tamara Polajnar, Colin Batchelor, and Simone Teufel. 2020. A Corpus of Very Short Scientific Summaries. In Proceedings of the 24th Conference on Computational Natural Language Learning, pages 153–164, Online. Association for Computational Linguistics.