@inproceedings{conia-etal-2020-invero,
title = "{I}n{V}e{R}o: Making Semantic Role Labeling Accessible with Intelligible Verbs and Roles",
author = "Conia, Simone and
Brignone, Fabrizio and
Zanfardino, Davide and
Navigli, Roberto",
editor = "Liu, Qun and
Schlangen, David",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-demos.11/",
doi = "10.18653/v1/2020.emnlp-demos.11",
pages = "77--84",
abstract = "Semantic Role Labeling (SRL) is deeply dependent on complex linguistic resources and sophisticated neural models, which makes the task difficult to approach for non-experts. To address this issue we present a new platform named Intelligible Verbs and Roles (InVeRo). This platform provides access to a new verb resource, VerbAtlas, and a state-of-the-art pretrained implementation of a neural, span-based architecture for SRL. Both the resource and the system provide human-readable verb sense and semantic role information, with an easy to use Web interface and RESTful APIs available at \url{http://nlp.uniroma1.it/invero}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="conia-etal-2020-invero">
<titleInfo>
<title>InVeRo: Making Semantic Role Labeling Accessible with Intelligible Verbs and Roles</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simone</namePart>
<namePart type="family">Conia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabrizio</namePart>
<namePart type="family">Brignone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davide</namePart>
<namePart type="family">Zanfardino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Schlangen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Semantic Role Labeling (SRL) is deeply dependent on complex linguistic resources and sophisticated neural models, which makes the task difficult to approach for non-experts. To address this issue we present a new platform named Intelligible Verbs and Roles (InVeRo). This platform provides access to a new verb resource, VerbAtlas, and a state-of-the-art pretrained implementation of a neural, span-based architecture for SRL. Both the resource and the system provide human-readable verb sense and semantic role information, with an easy to use Web interface and RESTful APIs available at http://nlp.uniroma1.it/invero.</abstract>
<identifier type="citekey">conia-etal-2020-invero</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-demos.11</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-demos.11/</url>
</location>
<part>
<date>2020-10</date>
<extent unit="page">
<start>77</start>
<end>84</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T InVeRo: Making Semantic Role Labeling Accessible with Intelligible Verbs and Roles
%A Conia, Simone
%A Brignone, Fabrizio
%A Zanfardino, Davide
%A Navigli, Roberto
%Y Liu, Qun
%Y Schlangen, David
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2020
%8 October
%I Association for Computational Linguistics
%C Online
%F conia-etal-2020-invero
%X Semantic Role Labeling (SRL) is deeply dependent on complex linguistic resources and sophisticated neural models, which makes the task difficult to approach for non-experts. To address this issue we present a new platform named Intelligible Verbs and Roles (InVeRo). This platform provides access to a new verb resource, VerbAtlas, and a state-of-the-art pretrained implementation of a neural, span-based architecture for SRL. Both the resource and the system provide human-readable verb sense and semantic role information, with an easy to use Web interface and RESTful APIs available at http://nlp.uniroma1.it/invero.
%R 10.18653/v1/2020.emnlp-demos.11
%U https://aclanthology.org/2020.emnlp-demos.11/
%U https://doi.org/10.18653/v1/2020.emnlp-demos.11
%P 77-84
Markdown (Informal)
[InVeRo: Making Semantic Role Labeling Accessible with Intelligible Verbs and Roles](https://aclanthology.org/2020.emnlp-demos.11/) (Conia et al., EMNLP 2020)
ACL