@inproceedings{broscheit-etal-2020-libkge,
title = "{L}ib{KGE} - A knowledge graph embedding library for reproducible research",
author = "Broscheit, Samuel and
Ruffinelli, Daniel and
Kochsiek, Adrian and
Betz, Patrick and
Gemulla, Rainer",
editor = "Liu, Qun and
Schlangen, David",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-demos.22",
doi = "10.18653/v1/2020.emnlp-demos.22",
pages = "165--174",
abstract = "LibKGE ( \url{https://github.com/uma-pi1/kge} ) is an open-source PyTorch-based library for training, hyperparameter optimization, and evaluation of knowledge graph embedding models for link prediction. The key goals of LibKGE are to enable reproducible research, to provide a framework for comprehensive experimental studies, and to facilitate analyzing the contributions of individual components of training methods, model architectures, and evaluation methods. LibKGE is highly configurable and every experiment can be fully reproduced with a single configuration file. Individual components are decoupled to the extent possible so that they can be mixed and matched with each other. Implementations in LibKGE aim to be as efficient as possible without leaving the scope of Python/Numpy/PyTorch. A comprehensive logging mechanism and tooling facilitates in-depth analysis. LibKGE provides implementations of common knowledge graph embedding models and training methods, and new ones can be easily added. A comparative study (Ruffinelli et al., 2020) showed that LibKGE reaches competitive to state-of-the-art performance for many models with a modest amount of automatic hyperparameter tuning.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="broscheit-etal-2020-libkge">
<titleInfo>
<title>LibKGE - A knowledge graph embedding library for reproducible research</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Broscheit</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Ruffinelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adrian</namePart>
<namePart type="family">Kochsiek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Betz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rainer</namePart>
<namePart type="family">Gemulla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Schlangen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>LibKGE ( https://github.com/uma-pi1/kge ) is an open-source PyTorch-based library for training, hyperparameter optimization, and evaluation of knowledge graph embedding models for link prediction. The key goals of LibKGE are to enable reproducible research, to provide a framework for comprehensive experimental studies, and to facilitate analyzing the contributions of individual components of training methods, model architectures, and evaluation methods. LibKGE is highly configurable and every experiment can be fully reproduced with a single configuration file. Individual components are decoupled to the extent possible so that they can be mixed and matched with each other. Implementations in LibKGE aim to be as efficient as possible without leaving the scope of Python/Numpy/PyTorch. A comprehensive logging mechanism and tooling facilitates in-depth analysis. LibKGE provides implementations of common knowledge graph embedding models and training methods, and new ones can be easily added. A comparative study (Ruffinelli et al., 2020) showed that LibKGE reaches competitive to state-of-the-art performance for many models with a modest amount of automatic hyperparameter tuning.</abstract>
<identifier type="citekey">broscheit-etal-2020-libkge</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-demos.22</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-demos.22</url>
</location>
<part>
<date>2020-10</date>
<extent unit="page">
<start>165</start>
<end>174</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LibKGE - A knowledge graph embedding library for reproducible research
%A Broscheit, Samuel
%A Ruffinelli, Daniel
%A Kochsiek, Adrian
%A Betz, Patrick
%A Gemulla, Rainer
%Y Liu, Qun
%Y Schlangen, David
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2020
%8 October
%I Association for Computational Linguistics
%C Online
%F broscheit-etal-2020-libkge
%X LibKGE ( https://github.com/uma-pi1/kge ) is an open-source PyTorch-based library for training, hyperparameter optimization, and evaluation of knowledge graph embedding models for link prediction. The key goals of LibKGE are to enable reproducible research, to provide a framework for comprehensive experimental studies, and to facilitate analyzing the contributions of individual components of training methods, model architectures, and evaluation methods. LibKGE is highly configurable and every experiment can be fully reproduced with a single configuration file. Individual components are decoupled to the extent possible so that they can be mixed and matched with each other. Implementations in LibKGE aim to be as efficient as possible without leaving the scope of Python/Numpy/PyTorch. A comprehensive logging mechanism and tooling facilitates in-depth analysis. LibKGE provides implementations of common knowledge graph embedding models and training methods, and new ones can be easily added. A comparative study (Ruffinelli et al., 2020) showed that LibKGE reaches competitive to state-of-the-art performance for many models with a modest amount of automatic hyperparameter tuning.
%R 10.18653/v1/2020.emnlp-demos.22
%U https://aclanthology.org/2020.emnlp-demos.22
%U https://doi.org/10.18653/v1/2020.emnlp-demos.22
%P 165-174
Markdown (Informal)
[LibKGE - A knowledge graph embedding library for reproducible research](https://aclanthology.org/2020.emnlp-demos.22) (Broscheit et al., EMNLP 2020)
ACL