@inproceedings{ousidhoum-etal-2020-comparative,
title = "Comparative Evaluation of Label-Agnostic Selection Bias in Multilingual Hate Speech Datasets",
author = "Ousidhoum, Nedjma and
Song, Yangqiu and
Yeung, Dit-Yan",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.199/",
doi = "10.18653/v1/2020.emnlp-main.199",
pages = "2532--2542",
abstract = "Work on bias in hate speech typically aims to improve classification performance while relatively overlooking the quality of the data. We examine selection bias in hate speech in a language and label independent fashion. We first use topic models to discover latent semantics in eleven hate speech corpora, then, we present two bias evaluation metrics based on the semantic similarity between topics and search words frequently used to build corpora. We discuss the possibility of revising the data collection process by comparing datasets and analyzing contrastive case studies."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ousidhoum-etal-2020-comparative">
<titleInfo>
<title>Comparative Evaluation of Label-Agnostic Selection Bias in Multilingual Hate Speech Datasets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nedjma</namePart>
<namePart type="family">Ousidhoum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yangqiu</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dit-Yan</namePart>
<namePart type="family">Yeung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Work on bias in hate speech typically aims to improve classification performance while relatively overlooking the quality of the data. We examine selection bias in hate speech in a language and label independent fashion. We first use topic models to discover latent semantics in eleven hate speech corpora, then, we present two bias evaluation metrics based on the semantic similarity between topics and search words frequently used to build corpora. We discuss the possibility of revising the data collection process by comparing datasets and analyzing contrastive case studies.</abstract>
<identifier type="citekey">ousidhoum-etal-2020-comparative</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.199</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.199/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>2532</start>
<end>2542</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comparative Evaluation of Label-Agnostic Selection Bias in Multilingual Hate Speech Datasets
%A Ousidhoum, Nedjma
%A Song, Yangqiu
%A Yeung, Dit-Yan
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F ousidhoum-etal-2020-comparative
%X Work on bias in hate speech typically aims to improve classification performance while relatively overlooking the quality of the data. We examine selection bias in hate speech in a language and label independent fashion. We first use topic models to discover latent semantics in eleven hate speech corpora, then, we present two bias evaluation metrics based on the semantic similarity between topics and search words frequently used to build corpora. We discuss the possibility of revising the data collection process by comparing datasets and analyzing contrastive case studies.
%R 10.18653/v1/2020.emnlp-main.199
%U https://aclanthology.org/2020.emnlp-main.199/
%U https://doi.org/10.18653/v1/2020.emnlp-main.199
%P 2532-2542
Markdown (Informal)
[Comparative Evaluation of Label-Agnostic Selection Bias in Multilingual Hate Speech Datasets](https://aclanthology.org/2020.emnlp-main.199/) (Ousidhoum et al., EMNLP 2020)
ACL