@inproceedings{weir-etal-2020-cod3s,
title = "{COD3S}: Diverse Generation with Discrete Semantic Signatures",
author = "Weir, Nathaniel and
Sedoc, Jo{\~a}o and
Van Durme, Benjamin",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.421",
doi = "10.18653/v1/2020.emnlp-main.421",
pages = "5199--5211",
abstract = "We present COD3S, a novel method for generating semantically diverse sentences using neural sequence-to-sequence (seq2seq) models. Conditioned on an input, seq2seqs typically produce semantically and syntactically homogeneous sets of sentences and thus perform poorly on one-to-many sequence generation tasks. Our two-stage approach improves output diversity by conditioning generation on locality-sensitive hash (LSH)-based semantic sentence codes whose Hamming distances highly correlate with human judgments of semantic textual similarity. Though it is generally applicable, we apply to causal generation, the task of predicting a proposition{'}s plausible causes or effects. We demonstrate through automatic and human evaluation that responses produced using our method exhibit improved diversity without degrading task performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="weir-etal-2020-cod3s">
<titleInfo>
<title>COD3S: Diverse Generation with Discrete Semantic Signatures</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nathaniel</namePart>
<namePart type="family">Weir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present COD3S, a novel method for generating semantically diverse sentences using neural sequence-to-sequence (seq2seq) models. Conditioned on an input, seq2seqs typically produce semantically and syntactically homogeneous sets of sentences and thus perform poorly on one-to-many sequence generation tasks. Our two-stage approach improves output diversity by conditioning generation on locality-sensitive hash (LSH)-based semantic sentence codes whose Hamming distances highly correlate with human judgments of semantic textual similarity. Though it is generally applicable, we apply to causal generation, the task of predicting a proposition’s plausible causes or effects. We demonstrate through automatic and human evaluation that responses produced using our method exhibit improved diversity without degrading task performance.</abstract>
<identifier type="citekey">weir-etal-2020-cod3s</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.421</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.421</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>5199</start>
<end>5211</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T COD3S: Diverse Generation with Discrete Semantic Signatures
%A Weir, Nathaniel
%A Sedoc, João
%A Van Durme, Benjamin
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F weir-etal-2020-cod3s
%X We present COD3S, a novel method for generating semantically diverse sentences using neural sequence-to-sequence (seq2seq) models. Conditioned on an input, seq2seqs typically produce semantically and syntactically homogeneous sets of sentences and thus perform poorly on one-to-many sequence generation tasks. Our two-stage approach improves output diversity by conditioning generation on locality-sensitive hash (LSH)-based semantic sentence codes whose Hamming distances highly correlate with human judgments of semantic textual similarity. Though it is generally applicable, we apply to causal generation, the task of predicting a proposition’s plausible causes or effects. We demonstrate through automatic and human evaluation that responses produced using our method exhibit improved diversity without degrading task performance.
%R 10.18653/v1/2020.emnlp-main.421
%U https://aclanthology.org/2020.emnlp-main.421
%U https://doi.org/10.18653/v1/2020.emnlp-main.421
%P 5199-5211
Markdown (Informal)
[COD3S: Diverse Generation with Discrete Semantic Signatures](https://aclanthology.org/2020.emnlp-main.421) (Weir et al., EMNLP 2020)
ACL