@inproceedings{limisiewicz-etal-2020-universal,
title = "{U}niversal {D}ependencies {A}ccording to {BERT}: {B}oth {M}ore {S}pecific and {M}ore {G}eneral",
author = "Limisiewicz, Tomasz and
Mare{\v{c}}ek, David and
Rosa, Rudolf",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.245/",
doi = "10.18653/v1/2020.findings-emnlp.245",
pages = "2710--2722",
abstract = "This work focuses on analyzing the form and extent of syntactic abstraction captured by BERT by extracting labeled dependency trees from self-attentions. Previous work showed that individual BERT heads tend to encode particular dependency relation types. We extend these findings by explicitly comparing BERT relations to Universal Dependencies (UD) annotations, showing that they often do not match one-to-one. We suggest a method for relation identification and syntactic tree construction. Our approach produces significantly more consistent dependency trees than previous work, showing that it better explains the syntactic abstractions in BERT. At the same time, it can be successfully applied with only a minimal amount of supervision and generalizes well across languages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="limisiewicz-etal-2020-universal">
<titleInfo>
<title>Universal Dependencies According to BERT: Both More Specific and More General</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tomasz</namePart>
<namePart type="family">Limisiewicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Mareček</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rudolf</namePart>
<namePart type="family">Rosa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This work focuses on analyzing the form and extent of syntactic abstraction captured by BERT by extracting labeled dependency trees from self-attentions. Previous work showed that individual BERT heads tend to encode particular dependency relation types. We extend these findings by explicitly comparing BERT relations to Universal Dependencies (UD) annotations, showing that they often do not match one-to-one. We suggest a method for relation identification and syntactic tree construction. Our approach produces significantly more consistent dependency trees than previous work, showing that it better explains the syntactic abstractions in BERT. At the same time, it can be successfully applied with only a minimal amount of supervision and generalizes well across languages.</abstract>
<identifier type="citekey">limisiewicz-etal-2020-universal</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.245</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.245/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>2710</start>
<end>2722</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Universal Dependencies According to BERT: Both More Specific and More General
%A Limisiewicz, Tomasz
%A Mareček, David
%A Rosa, Rudolf
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F limisiewicz-etal-2020-universal
%X This work focuses on analyzing the form and extent of syntactic abstraction captured by BERT by extracting labeled dependency trees from self-attentions. Previous work showed that individual BERT heads tend to encode particular dependency relation types. We extend these findings by explicitly comparing BERT relations to Universal Dependencies (UD) annotations, showing that they often do not match one-to-one. We suggest a method for relation identification and syntactic tree construction. Our approach produces significantly more consistent dependency trees than previous work, showing that it better explains the syntactic abstractions in BERT. At the same time, it can be successfully applied with only a minimal amount of supervision and generalizes well across languages.
%R 10.18653/v1/2020.findings-emnlp.245
%U https://aclanthology.org/2020.findings-emnlp.245/
%U https://doi.org/10.18653/v1/2020.findings-emnlp.245
%P 2710-2722
Markdown (Informal)
[Universal Dependencies According to BERT: Both More Specific and More General](https://aclanthology.org/2020.findings-emnlp.245/) (Limisiewicz et al., Findings 2020)
ACL