@inproceedings{raheja-alikaniotis-2020-adversarial,
title = "{A}dversarial {G}rammatical {E}rror {C}orrection",
author = "Raheja, Vipul and
Alikaniotis, Dimitris",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.275/",
doi = "10.18653/v1/2020.findings-emnlp.275",
pages = "3075--3087",
abstract = "Recent works in Grammatical Error Correction (GEC) have leveraged the progress in Neural Machine Translation (NMT), to learn rewrites from parallel corpora of grammatically incorrect and corrected sentences, achieving state-of-the-art results. At the same time, Generative Adversarial Networks (GANs) have been successful in generating realistic texts across many different tasks by learning to directly minimize the difference between human-generated and synthetic text. In this work, we present an adversarial learning approach to GEC, using the generator-discriminator framework. The generator is a Transformer model, trained to produce grammatically correct sentences given grammatically incorrect ones. The discriminator is a sentence-pair classification model, trained to judge a given pair of grammatically incorrect-correct sentences on the quality of grammatical correction. We pre-train both the discriminator and the generator on parallel texts and then fine-tune them further using a policy gradient method that assigns high rewards to sentences which could be true corrections of the grammatically incorrect text. Experimental results on FCE, CoNLL-14, and BEA-19 datasets show that Adversarial-GEC can achieve competitive GEC quality compared to NMT-based baselines."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="raheja-alikaniotis-2020-adversarial">
<titleInfo>
<title>Adversarial Grammatical Error Correction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vipul</namePart>
<namePart type="family">Raheja</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dimitris</namePart>
<namePart type="family">Alikaniotis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent works in Grammatical Error Correction (GEC) have leveraged the progress in Neural Machine Translation (NMT), to learn rewrites from parallel corpora of grammatically incorrect and corrected sentences, achieving state-of-the-art results. At the same time, Generative Adversarial Networks (GANs) have been successful in generating realistic texts across many different tasks by learning to directly minimize the difference between human-generated and synthetic text. In this work, we present an adversarial learning approach to GEC, using the generator-discriminator framework. The generator is a Transformer model, trained to produce grammatically correct sentences given grammatically incorrect ones. The discriminator is a sentence-pair classification model, trained to judge a given pair of grammatically incorrect-correct sentences on the quality of grammatical correction. We pre-train both the discriminator and the generator on parallel texts and then fine-tune them further using a policy gradient method that assigns high rewards to sentences which could be true corrections of the grammatically incorrect text. Experimental results on FCE, CoNLL-14, and BEA-19 datasets show that Adversarial-GEC can achieve competitive GEC quality compared to NMT-based baselines.</abstract>
<identifier type="citekey">raheja-alikaniotis-2020-adversarial</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.275</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.275/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>3075</start>
<end>3087</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adversarial Grammatical Error Correction
%A Raheja, Vipul
%A Alikaniotis, Dimitris
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F raheja-alikaniotis-2020-adversarial
%X Recent works in Grammatical Error Correction (GEC) have leveraged the progress in Neural Machine Translation (NMT), to learn rewrites from parallel corpora of grammatically incorrect and corrected sentences, achieving state-of-the-art results. At the same time, Generative Adversarial Networks (GANs) have been successful in generating realistic texts across many different tasks by learning to directly minimize the difference between human-generated and synthetic text. In this work, we present an adversarial learning approach to GEC, using the generator-discriminator framework. The generator is a Transformer model, trained to produce grammatically correct sentences given grammatically incorrect ones. The discriminator is a sentence-pair classification model, trained to judge a given pair of grammatically incorrect-correct sentences on the quality of grammatical correction. We pre-train both the discriminator and the generator on parallel texts and then fine-tune them further using a policy gradient method that assigns high rewards to sentences which could be true corrections of the grammatically incorrect text. Experimental results on FCE, CoNLL-14, and BEA-19 datasets show that Adversarial-GEC can achieve competitive GEC quality compared to NMT-based baselines.
%R 10.18653/v1/2020.findings-emnlp.275
%U https://aclanthology.org/2020.findings-emnlp.275/
%U https://doi.org/10.18653/v1/2020.findings-emnlp.275
%P 3075-3087
Markdown (Informal)
[Adversarial Grammatical Error Correction](https://aclanthology.org/2020.findings-emnlp.275/) (Raheja & Alikaniotis, Findings 2020)
ACL
- Vipul Raheja and Dimitris Alikaniotis. 2020. Adversarial Grammatical Error Correction. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3075–3087, Online. Association for Computational Linguistics.