@inproceedings{li-etal-2020-context-aware,
title = "Context-aware Stand-alone Neural Spelling Correction",
author = "Li, Xiangci and
Liu, Hairong and
Huang, Liang",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.37/",
doi = "10.18653/v1/2020.findings-emnlp.37",
pages = "407--414",
abstract = "Existing natural language processing systems are vulnerable to noisy inputs resulting from misspellings. On the contrary, humans can easily infer the corresponding correct words from their misspellings and surrounding context. Inspired by this, we address the stand-alone spelling correction problem, which only corrects the spelling of each token without additional token insertion or deletion, by utilizing both spelling information and global context representations. We present a simple yet powerful solution that jointly detects and corrects misspellings as a sequence labeling task by fine-turning a pre-trained language model. Our solution outperform the previous state-of-the-art result by 12.8{\%} absolute F0.5 score."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2020-context-aware">
<titleInfo>
<title>Context-aware Stand-alone Neural Spelling Correction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiangci</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hairong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing natural language processing systems are vulnerable to noisy inputs resulting from misspellings. On the contrary, humans can easily infer the corresponding correct words from their misspellings and surrounding context. Inspired by this, we address the stand-alone spelling correction problem, which only corrects the spelling of each token without additional token insertion or deletion, by utilizing both spelling information and global context representations. We present a simple yet powerful solution that jointly detects and corrects misspellings as a sequence labeling task by fine-turning a pre-trained language model. Our solution outperform the previous state-of-the-art result by 12.8% absolute F0.5 score.</abstract>
<identifier type="citekey">li-etal-2020-context-aware</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.37</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.37/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>407</start>
<end>414</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Context-aware Stand-alone Neural Spelling Correction
%A Li, Xiangci
%A Liu, Hairong
%A Huang, Liang
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F li-etal-2020-context-aware
%X Existing natural language processing systems are vulnerable to noisy inputs resulting from misspellings. On the contrary, humans can easily infer the corresponding correct words from their misspellings and surrounding context. Inspired by this, we address the stand-alone spelling correction problem, which only corrects the spelling of each token without additional token insertion or deletion, by utilizing both spelling information and global context representations. We present a simple yet powerful solution that jointly detects and corrects misspellings as a sequence labeling task by fine-turning a pre-trained language model. Our solution outperform the previous state-of-the-art result by 12.8% absolute F0.5 score.
%R 10.18653/v1/2020.findings-emnlp.37
%U https://aclanthology.org/2020.findings-emnlp.37/
%U https://doi.org/10.18653/v1/2020.findings-emnlp.37
%P 407-414
Markdown (Informal)
[Context-aware Stand-alone Neural Spelling Correction](https://aclanthology.org/2020.findings-emnlp.37/) (Li et al., Findings 2020)
ACL