@inproceedings{nguyen-etal-2020-structural,
title = "Structural and Functional Decomposition for Personality Image Captioning in a Communication Game",
author = "Nguyen, Minh Thu and
Phung, Duy and
Hoai, Minh and
Nguyen, Thien Huu",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.411/",
doi = "10.18653/v1/2020.findings-emnlp.411",
pages = "4587--4593",
abstract = "Personality image captioning (PIC) aims to describe an image with a natural language caption given a personality trait. In this work, we introduce a novel formulation for PIC based on a communication game between a speaker and a listener. The speaker attempts to generate natural language captions while the listener encourages the generated captions to contain discriminative information about the input images and personality traits. In this way, we expect that the generated captions can be improved to naturally represent the images and express the traits. In addition, we propose to adapt the language model GPT2 to perform caption generation for PIC. This enables the speaker and listener to benefit from the language encoding capacity of GPT2. Our experiments show that the proposed model achieves the state-of-the-art performance for PIC."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nguyen-etal-2020-structural">
<titleInfo>
<title>Structural and Functional Decomposition for Personality Image Captioning in a Communication Game</title>
</titleInfo>
<name type="personal">
<namePart type="given">Minh</namePart>
<namePart type="given">Thu</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Duy</namePart>
<namePart type="family">Phung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minh</namePart>
<namePart type="family">Hoai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thien</namePart>
<namePart type="given">Huu</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Personality image captioning (PIC) aims to describe an image with a natural language caption given a personality trait. In this work, we introduce a novel formulation for PIC based on a communication game between a speaker and a listener. The speaker attempts to generate natural language captions while the listener encourages the generated captions to contain discriminative information about the input images and personality traits. In this way, we expect that the generated captions can be improved to naturally represent the images and express the traits. In addition, we propose to adapt the language model GPT2 to perform caption generation for PIC. This enables the speaker and listener to benefit from the language encoding capacity of GPT2. Our experiments show that the proposed model achieves the state-of-the-art performance for PIC.</abstract>
<identifier type="citekey">nguyen-etal-2020-structural</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.411</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.411/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>4587</start>
<end>4593</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Structural and Functional Decomposition for Personality Image Captioning in a Communication Game
%A Nguyen, Minh Thu
%A Phung, Duy
%A Hoai, Minh
%A Nguyen, Thien Huu
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F nguyen-etal-2020-structural
%X Personality image captioning (PIC) aims to describe an image with a natural language caption given a personality trait. In this work, we introduce a novel formulation for PIC based on a communication game between a speaker and a listener. The speaker attempts to generate natural language captions while the listener encourages the generated captions to contain discriminative information about the input images and personality traits. In this way, we expect that the generated captions can be improved to naturally represent the images and express the traits. In addition, we propose to adapt the language model GPT2 to perform caption generation for PIC. This enables the speaker and listener to benefit from the language encoding capacity of GPT2. Our experiments show that the proposed model achieves the state-of-the-art performance for PIC.
%R 10.18653/v1/2020.findings-emnlp.411
%U https://aclanthology.org/2020.findings-emnlp.411/
%U https://doi.org/10.18653/v1/2020.findings-emnlp.411
%P 4587-4593
Markdown (Informal)
[Structural and Functional Decomposition for Personality Image Captioning in a Communication Game](https://aclanthology.org/2020.findings-emnlp.411/) (Nguyen et al., Findings 2020)
ACL