@inproceedings{melly-etal-2020-consolidated,
title = "A Consolidated Dataset for Knowledge-based Question Generation using Predicate Mapping of Linked Data",
author = "Melly, Johanna and
Luthier, Gabriel and
Popescu-Belis, Andrei",
editor = "Bunt, Harry",
booktitle = "Proceedings of the 16th Joint ACL-ISO Workshop on Interoperable Semantic Annotation",
month = may,
year = "2020",
address = "Marseille",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.isa-1.7",
pages = "59--66",
abstract = "In this paper, we present the ForwardQuestions data set, made of human-generated questions related to knowledge triples. This data set results from the conversion and merger of the existing SimpleDBPediaQA and SimpleQuestionsWikidata data sets, including the mapping of predicates from DBPedia to Wikidata, and the selection of {`}forward{'} questions as opposed to {`}backward{'} ones. The new data set can be used to generate novel questions given an unseen Wikidata triple, by replacing the subjects of existing questions with the new one and then selecting the best candidate questions using semantic and syntactic criteria. Evaluation results indicate that the question generation method using ForwardQuestions improves the quality of questions by about 20{\%} with respect to a baseline not using ranking criteria.",
language = "English",
ISBN = "979-10-95546-48-1",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="melly-etal-2020-consolidated">
<titleInfo>
<title>A Consolidated Dataset for Knowledge-based Question Generation using Predicate Mapping of Linked Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Johanna</namePart>
<namePart type="family">Melly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Luthier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrei</namePart>
<namePart type="family">Popescu-Belis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Joint ACL-ISO Workshop on Interoperable Semantic Annotation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Harry</namePart>
<namePart type="family">Bunt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-48-1</identifier>
</relatedItem>
<abstract>In this paper, we present the ForwardQuestions data set, made of human-generated questions related to knowledge triples. This data set results from the conversion and merger of the existing SimpleDBPediaQA and SimpleQuestionsWikidata data sets, including the mapping of predicates from DBPedia to Wikidata, and the selection of ‘forward’ questions as opposed to ‘backward’ ones. The new data set can be used to generate novel questions given an unseen Wikidata triple, by replacing the subjects of existing questions with the new one and then selecting the best candidate questions using semantic and syntactic criteria. Evaluation results indicate that the question generation method using ForwardQuestions improves the quality of questions by about 20% with respect to a baseline not using ranking criteria.</abstract>
<identifier type="citekey">melly-etal-2020-consolidated</identifier>
<location>
<url>https://aclanthology.org/2020.isa-1.7</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>59</start>
<end>66</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Consolidated Dataset for Knowledge-based Question Generation using Predicate Mapping of Linked Data
%A Melly, Johanna
%A Luthier, Gabriel
%A Popescu-Belis, Andrei
%Y Bunt, Harry
%S Proceedings of the 16th Joint ACL-ISO Workshop on Interoperable Semantic Annotation
%D 2020
%8 May
%I European Language Resources Association
%C Marseille
%@ 979-10-95546-48-1
%G English
%F melly-etal-2020-consolidated
%X In this paper, we present the ForwardQuestions data set, made of human-generated questions related to knowledge triples. This data set results from the conversion and merger of the existing SimpleDBPediaQA and SimpleQuestionsWikidata data sets, including the mapping of predicates from DBPedia to Wikidata, and the selection of ‘forward’ questions as opposed to ‘backward’ ones. The new data set can be used to generate novel questions given an unseen Wikidata triple, by replacing the subjects of existing questions with the new one and then selecting the best candidate questions using semantic and syntactic criteria. Evaluation results indicate that the question generation method using ForwardQuestions improves the quality of questions by about 20% with respect to a baseline not using ranking criteria.
%U https://aclanthology.org/2020.isa-1.7
%P 59-66
Markdown (Informal)
[A Consolidated Dataset for Knowledge-based Question Generation using Predicate Mapping of Linked Data](https://aclanthology.org/2020.isa-1.7) (Melly et al., ISA 2020)
ACL