@inproceedings{huang-etal-2020-context,
title = "Context-Aware Word Segmentation for {C}hinese Real-World Discourse",
author = "Huang, Kaiyu and
Liu, Junpeng and
Cao, Jingxiang and
Huang, Degen",
editor = "Liu, Qun and
Xiong, Deyi and
Ge, Shili and
Zhang, Xiaojun",
booktitle = "Proceedings of the Second International Workshop of Discourse Processing",
month = dec,
year = "2020",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.iwdp-1.5/",
doi = "10.18653/v1/2020.iwdp-1.5",
pages = "22--28",
abstract = "Previous neural approaches achieve significant progress for Chinese word segmentation (CWS) as a sentence-level task, but it suffers from limitations on real-world scenario. In this paper, we address this issue with a context-aware method and optimize the solution at document-level. This paper proposes a three-step strategy to improve the performance for discourse CWS. First, the method utilizes an auxiliary segmenter to remedy the limitation on pre-segmenter. Then the context-aware algorithm computes the confidence of each split. The maximum probability path is reconstructed via this algorithm. Besides, in order to evaluate the performance in discourse, we build a new benchmark consisting of the latest news and Chinese medical articles. Extensive experiments on this benchmark show that our proposed method achieves a competitive performance on a document-level real-world scenario for CWS."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2020-context">
<titleInfo>
<title>Context-Aware Word Segmentation for Chinese Real-World Discourse</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kaiyu</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junpeng</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingxiang</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Degen</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second International Workshop of Discourse Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deyi</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shili</namePart>
<namePart type="family">Ge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Previous neural approaches achieve significant progress for Chinese word segmentation (CWS) as a sentence-level task, but it suffers from limitations on real-world scenario. In this paper, we address this issue with a context-aware method and optimize the solution at document-level. This paper proposes a three-step strategy to improve the performance for discourse CWS. First, the method utilizes an auxiliary segmenter to remedy the limitation on pre-segmenter. Then the context-aware algorithm computes the confidence of each split. The maximum probability path is reconstructed via this algorithm. Besides, in order to evaluate the performance in discourse, we build a new benchmark consisting of the latest news and Chinese medical articles. Extensive experiments on this benchmark show that our proposed method achieves a competitive performance on a document-level real-world scenario for CWS.</abstract>
<identifier type="citekey">huang-etal-2020-context</identifier>
<identifier type="doi">10.18653/v1/2020.iwdp-1.5</identifier>
<location>
<url>https://aclanthology.org/2020.iwdp-1.5/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>22</start>
<end>28</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Context-Aware Word Segmentation for Chinese Real-World Discourse
%A Huang, Kaiyu
%A Liu, Junpeng
%A Cao, Jingxiang
%A Huang, Degen
%Y Liu, Qun
%Y Xiong, Deyi
%Y Ge, Shili
%Y Zhang, Xiaojun
%S Proceedings of the Second International Workshop of Discourse Processing
%D 2020
%8 December
%I Association for Computational Linguistics
%C Suzhou, China
%F huang-etal-2020-context
%X Previous neural approaches achieve significant progress for Chinese word segmentation (CWS) as a sentence-level task, but it suffers from limitations on real-world scenario. In this paper, we address this issue with a context-aware method and optimize the solution at document-level. This paper proposes a three-step strategy to improve the performance for discourse CWS. First, the method utilizes an auxiliary segmenter to remedy the limitation on pre-segmenter. Then the context-aware algorithm computes the confidence of each split. The maximum probability path is reconstructed via this algorithm. Besides, in order to evaluate the performance in discourse, we build a new benchmark consisting of the latest news and Chinese medical articles. Extensive experiments on this benchmark show that our proposed method achieves a competitive performance on a document-level real-world scenario for CWS.
%R 10.18653/v1/2020.iwdp-1.5
%U https://aclanthology.org/2020.iwdp-1.5/
%U https://doi.org/10.18653/v1/2020.iwdp-1.5
%P 22-28
Markdown (Informal)
[Context-Aware Word Segmentation for Chinese Real-World Discourse](https://aclanthology.org/2020.iwdp-1.5/) (Huang et al., iwdp 2020)
ACL