@inproceedings{buet-2020-analyse,
title = "Analyse de la r{\'e}gulation de la longueur dans un syst{\`e}me neuronal de compression de phrase : une {\'e}tude du mod{\`e}le {L}en{I}nit (Investigating Length Regulation in a Sentence Compression Neural System : a Study on the {L}en{I}nit Model)",
author = "Buet, Fran{\c{c}}ois",
editor = "Benzitoun, Christophe and
Braud, Chlo{\'e} and
Huber, Laurine and
Langlois, David and
Ouni, Slim and
Pogodalla, Sylvain and
Schneider, St{\'e}phane",
booktitle = "Actes de la 6e conf{\'e}rence conjointe Journ{\'e}es d'{\'E}tudes sur la Parole (JEP, 33e {\'e}dition), Traitement Automatique des Langues Naturelles (TALN, 27e {\'e}dition), Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (R{\'E}CITAL, 22e {\'e}dition). Volume 3 : Rencontre des {\'E}tudiants Chercheurs en Informatique pour le TAL",
month = "6",
year = "2020",
address = "Nancy, France",
publisher = "ATALA et AFCP",
url = "https://aclanthology.org/2020.jeptalnrecital-recital.5",
pages = "57--70",
abstract = "La simplification de phrase vise {\`a} r{\'e}duire la complexit{\'e} d{'}une phrase tout en retenant son sens initial et sa grammaticalit{\'e}. En pratique, il est souvent attendu que la phrase produite soit plus courte que la phrase d{'}origine, et les mod{\`e}les qui int{\`e}grent un contr{\^o}le explicite de la longueur de sortie rev{\^e}tent un int{\'e}r{\^e}t particulier. Dans la continuit{\'e} de la litt{\'e}rature d{\'e}di{\'e}e {\`a} la compr{\'e}hension du comportement des syst{\`e}mes neuronaux, nous examinons dans cet article les m{\'e}canismes de r{\'e}gulation de longueur d{'}un encodeur-d{\'e}codeur RNN appliqu{\'e} {\`a} la compression de phrase, en {\'e}tudiant sp{\'e}cifiquement le cas du mod{\`e}le LenInit. Notre analyse met en {\'e}vidence la coexistence de deux influences distinctes au cours du d{\'e}codage : celle du contr{\^o}le explicite de la longueur, et celle du mod{\`e}le de langue du d{\'e}codeur.",
language = "French",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="buet-2020-analyse">
<titleInfo>
<title>Analyse de la régulation de la longueur dans un système neuronal de compression de phrase : une étude du modèle LenInit (Investigating Length Regulation in a Sentence Compression Neural System : a Study on the LenInit Model)</title>
</titleInfo>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Buet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">French</languageTerm>
<languageTerm type="code" authority="iso639-2b">fre</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Actes de la 6e conférence conjointe Journées d’Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 3 : Rencontre des Étudiants Chercheurs en Informatique pour le TAL</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christophe</namePart>
<namePart type="family">Benzitoun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chloé</namePart>
<namePart type="family">Braud</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurine</namePart>
<namePart type="family">Huber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Langlois</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Slim</namePart>
<namePart type="family">Ouni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sylvain</namePart>
<namePart type="family">Pogodalla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stéphane</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ATALA et AFCP</publisher>
<place>
<placeTerm type="text">Nancy, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>La simplification de phrase vise à réduire la complexité d’une phrase tout en retenant son sens initial et sa grammaticalité. En pratique, il est souvent attendu que la phrase produite soit plus courte que la phrase d’origine, et les modèles qui intègrent un contrôle explicite de la longueur de sortie revêtent un intérêt particulier. Dans la continuité de la littérature dédiée à la compréhension du comportement des systèmes neuronaux, nous examinons dans cet article les mécanismes de régulation de longueur d’un encodeur-décodeur RNN appliqué à la compression de phrase, en étudiant spécifiquement le cas du modèle LenInit. Notre analyse met en évidence la coexistence de deux influences distinctes au cours du décodage : celle du contrôle explicite de la longueur, et celle du modèle de langue du décodeur.</abstract>
<identifier type="citekey">buet-2020-analyse</identifier>
<location>
<url>https://aclanthology.org/2020.jeptalnrecital-recital.5</url>
</location>
<part>
<date>2020-6</date>
<extent unit="page">
<start>57</start>
<end>70</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analyse de la régulation de la longueur dans un système neuronal de compression de phrase : une étude du modèle LenInit (Investigating Length Regulation in a Sentence Compression Neural System : a Study on the LenInit Model)
%A Buet, François
%Y Benzitoun, Christophe
%Y Braud, Chloé
%Y Huber, Laurine
%Y Langlois, David
%Y Ouni, Slim
%Y Pogodalla, Sylvain
%Y Schneider, Stéphane
%S Actes de la 6e conférence conjointe Journées d’Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 3 : Rencontre des Étudiants Chercheurs en Informatique pour le TAL
%D 2020
%8 June
%I ATALA et AFCP
%C Nancy, France
%G French
%F buet-2020-analyse
%X La simplification de phrase vise à réduire la complexité d’une phrase tout en retenant son sens initial et sa grammaticalité. En pratique, il est souvent attendu que la phrase produite soit plus courte que la phrase d’origine, et les modèles qui intègrent un contrôle explicite de la longueur de sortie revêtent un intérêt particulier. Dans la continuité de la littérature dédiée à la compréhension du comportement des systèmes neuronaux, nous examinons dans cet article les mécanismes de régulation de longueur d’un encodeur-décodeur RNN appliqué à la compression de phrase, en étudiant spécifiquement le cas du modèle LenInit. Notre analyse met en évidence la coexistence de deux influences distinctes au cours du décodage : celle du contrôle explicite de la longueur, et celle du modèle de langue du décodeur.
%U https://aclanthology.org/2020.jeptalnrecital-recital.5
%P 57-70
Markdown (Informal)
[Analyse de la régulation de la longueur dans un système neuronal de compression de phrase : une étude du modèle LenInit (Investigating Length Regulation in a Sentence Compression Neural System : a Study on the LenInit Model)](https://aclanthology.org/2020.jeptalnrecital-recital.5) (Buet, JEP/TALN/RECITAL 2020)
ACL