@inproceedings{dennis-henderson-etal-2020-life,
title = "Life still goes on: Analysing {A}ustralian {WW}1 Diaries through Distant Reading",
author = "Dennis-Henderson, Ashley and
Roughan, Matthew and
Mitchell, Lewis and
Tuke, Jonathan",
editor = "DeGaetano, Stefania and
Kazantseva, Anna and
Reiter, Nils and
Szpakowicz, Stan",
booktitle = "Proceedings of the 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature",
month = dec,
year = "2020",
address = "Online",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.latechclfl-1.11/",
pages = "90--104",
abstract = "An increasing amount of historic data is now available in digital (text) formats. This gives quantitative researchers an opportunity to use distant reading techniques, as opposed to traditional close reading, in order to analyse larger quantities of historic data. Distant reading allows researchers to view overall patterns within the data and reduce researcher bias. One such data set that has recently been transcribed is a collection of over 500 Australian World War I (WW1) diaries held by the State Library of New South Wales. Here we apply distant reading techniques to this corpus to understand what soldiers wrote about and how they felt over the course of the war. Extracting dates accurately is important as it allows us to perform our analysis over time, however, it is very challenging due to the variety of date formats and abbreviations diarists use. But with that data, topic modelling and sentiment analysis can then be applied to show trends, for instance, that despite the horrors of war, Australians in WW1 primarily wrote about their everyday routines and experiences. Our results detail some of the challenges likely to be encountered by quantitative researchers intending to analyse historical texts, and provide some approaches to these issues."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dennis-henderson-etal-2020-life">
<titleInfo>
<title>Life still goes on: Analysing Australian WW1 Diaries through Distant Reading</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ashley</namePart>
<namePart type="family">Dennis-Henderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Roughan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lewis</namePart>
<namePart type="family">Mitchell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Tuke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stefania</namePart>
<namePart type="family">DeGaetano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Kazantseva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nils</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stan</namePart>
<namePart type="family">Szpakowicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>An increasing amount of historic data is now available in digital (text) formats. This gives quantitative researchers an opportunity to use distant reading techniques, as opposed to traditional close reading, in order to analyse larger quantities of historic data. Distant reading allows researchers to view overall patterns within the data and reduce researcher bias. One such data set that has recently been transcribed is a collection of over 500 Australian World War I (WW1) diaries held by the State Library of New South Wales. Here we apply distant reading techniques to this corpus to understand what soldiers wrote about and how they felt over the course of the war. Extracting dates accurately is important as it allows us to perform our analysis over time, however, it is very challenging due to the variety of date formats and abbreviations diarists use. But with that data, topic modelling and sentiment analysis can then be applied to show trends, for instance, that despite the horrors of war, Australians in WW1 primarily wrote about their everyday routines and experiences. Our results detail some of the challenges likely to be encountered by quantitative researchers intending to analyse historical texts, and provide some approaches to these issues.</abstract>
<identifier type="citekey">dennis-henderson-etal-2020-life</identifier>
<location>
<url>https://aclanthology.org/2020.latechclfl-1.11/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>90</start>
<end>104</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Life still goes on: Analysing Australian WW1 Diaries through Distant Reading
%A Dennis-Henderson, Ashley
%A Roughan, Matthew
%A Mitchell, Lewis
%A Tuke, Jonathan
%Y DeGaetano, Stefania
%Y Kazantseva, Anna
%Y Reiter, Nils
%Y Szpakowicz, Stan
%S Proceedings of the 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Online
%F dennis-henderson-etal-2020-life
%X An increasing amount of historic data is now available in digital (text) formats. This gives quantitative researchers an opportunity to use distant reading techniques, as opposed to traditional close reading, in order to analyse larger quantities of historic data. Distant reading allows researchers to view overall patterns within the data and reduce researcher bias. One such data set that has recently been transcribed is a collection of over 500 Australian World War I (WW1) diaries held by the State Library of New South Wales. Here we apply distant reading techniques to this corpus to understand what soldiers wrote about and how they felt over the course of the war. Extracting dates accurately is important as it allows us to perform our analysis over time, however, it is very challenging due to the variety of date formats and abbreviations diarists use. But with that data, topic modelling and sentiment analysis can then be applied to show trends, for instance, that despite the horrors of war, Australians in WW1 primarily wrote about their everyday routines and experiences. Our results detail some of the challenges likely to be encountered by quantitative researchers intending to analyse historical texts, and provide some approaches to these issues.
%U https://aclanthology.org/2020.latechclfl-1.11/
%P 90-104
Markdown (Informal)
[Life still goes on: Analysing Australian WW1 Diaries through Distant Reading](https://aclanthology.org/2020.latechclfl-1.11/) (Dennis-Henderson et al., LaTeCHCLfL 2020)
ACL
- Ashley Dennis-Henderson, Matthew Roughan, Lewis Mitchell, and Jonathan Tuke. 2020. Life still goes on: Analysing Australian WW1 Diaries through Distant Reading. In Proceedings of the 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, pages 90–104, Online. International Committee on Computational Linguistics.