@inproceedings{dejean-meunier-2020-vital,
title = "Vital Records: Uncover the past from historical handwritten records",
author = "Dejean, Herve and
Meunier, Jean-Luc",
editor = "DeGaetano, Stefania and
Kazantseva, Anna and
Reiter, Nils and
Szpakowicz, Stan",
booktitle = "Proceedings of the 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature",
month = dec,
year = "2020",
address = "Online",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.latechclfl-1.8/",
pages = "69--73",
abstract = "We present Vital Records, a demonstrator based on deep-learning approaches to handwritten-text recognition, table processing and information extraction, which enables data from century-old documents to be parsed and analysed, making it possible to explore death records in space and time. This demonstrator provides a user interface for browsing and visualising data extracted from 80,000 handwritten pages of tabular data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dejean-meunier-2020-vital">
<titleInfo>
<title>Vital Records: Uncover the past from historical handwritten records</title>
</titleInfo>
<name type="personal">
<namePart type="given">Herve</namePart>
<namePart type="family">Dejean</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean-Luc</namePart>
<namePart type="family">Meunier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stefania</namePart>
<namePart type="family">DeGaetano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Kazantseva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nils</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stan</namePart>
<namePart type="family">Szpakowicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present Vital Records, a demonstrator based on deep-learning approaches to handwritten-text recognition, table processing and information extraction, which enables data from century-old documents to be parsed and analysed, making it possible to explore death records in space and time. This demonstrator provides a user interface for browsing and visualising data extracted from 80,000 handwritten pages of tabular data.</abstract>
<identifier type="citekey">dejean-meunier-2020-vital</identifier>
<location>
<url>https://aclanthology.org/2020.latechclfl-1.8/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>69</start>
<end>73</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Vital Records: Uncover the past from historical handwritten records
%A Dejean, Herve
%A Meunier, Jean-Luc
%Y DeGaetano, Stefania
%Y Kazantseva, Anna
%Y Reiter, Nils
%Y Szpakowicz, Stan
%S Proceedings of the 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Online
%F dejean-meunier-2020-vital
%X We present Vital Records, a demonstrator based on deep-learning approaches to handwritten-text recognition, table processing and information extraction, which enables data from century-old documents to be parsed and analysed, making it possible to explore death records in space and time. This demonstrator provides a user interface for browsing and visualising data extracted from 80,000 handwritten pages of tabular data.
%U https://aclanthology.org/2020.latechclfl-1.8/
%P 69-73
Markdown (Informal)
[Vital Records: Uncover the past from historical handwritten records](https://aclanthology.org/2020.latechclfl-1.8/) (Dejean & Meunier, LaTeCHCLfL 2020)
ACL