@inproceedings{bostan-etal-2020-goodnewseveryone,
title = "{G}ood{N}ews{E}veryone: A Corpus of News Headlines Annotated with Emotions, Semantic Roles, and Reader Perception",
author = "Bostan, Laura Ana Maria and
Kim, Evgeny and
Klinger, Roman",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.194/",
pages = "1554--1566",
language = "eng",
ISBN = "979-10-95546-34-4",
abstract = "Most research on emotion analysis from text focuses on the task of emotion classification or emotion intensity regression. Fewer works address emotions as a phenomenon to be tackled with structured learning, which can be explained by the lack of relevant datasets. We fill this gap by releasing a dataset of 5000 English news headlines annotated via crowdsourcing with their associated emotions, the corresponding emotion experiencers and textual cues, related emotion causes and targets, as well as the reader`s perception of the emotion of the headline. This annotation task is comparably challenging, given the large number of classes and roles to be identified. We therefore propose a multiphase annotation procedure in which we first find relevant instances with emotional content and then annotate the more fine-grained aspects. Finally, we develop a baseline for the task of automatic prediction of semantic role structures and discuss the results. The corpus we release enables further research on emotion classification, emotion intensity prediction, emotion cause detection, and supports further qualitative studies."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bostan-etal-2020-goodnewseveryone">
<titleInfo>
<title>GoodNewsEveryone: A Corpus of News Headlines Annotated with Emotions, Semantic Roles, and Reader Perception</title>
</titleInfo>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="given">Ana</namePart>
<namePart type="given">Maria</namePart>
<namePart type="family">Bostan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Evgeny</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>Most research on emotion analysis from text focuses on the task of emotion classification or emotion intensity regression. Fewer works address emotions as a phenomenon to be tackled with structured learning, which can be explained by the lack of relevant datasets. We fill this gap by releasing a dataset of 5000 English news headlines annotated via crowdsourcing with their associated emotions, the corresponding emotion experiencers and textual cues, related emotion causes and targets, as well as the reader‘s perception of the emotion of the headline. This annotation task is comparably challenging, given the large number of classes and roles to be identified. We therefore propose a multiphase annotation procedure in which we first find relevant instances with emotional content and then annotate the more fine-grained aspects. Finally, we develop a baseline for the task of automatic prediction of semantic role structures and discuss the results. The corpus we release enables further research on emotion classification, emotion intensity prediction, emotion cause detection, and supports further qualitative studies.</abstract>
<identifier type="citekey">bostan-etal-2020-goodnewseveryone</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.194/</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>1554</start>
<end>1566</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GoodNewsEveryone: A Corpus of News Headlines Annotated with Emotions, Semantic Roles, and Reader Perception
%A Bostan, Laura Ana Maria
%A Kim, Evgeny
%A Klinger, Roman
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G eng
%F bostan-etal-2020-goodnewseveryone
%X Most research on emotion analysis from text focuses on the task of emotion classification or emotion intensity regression. Fewer works address emotions as a phenomenon to be tackled with structured learning, which can be explained by the lack of relevant datasets. We fill this gap by releasing a dataset of 5000 English news headlines annotated via crowdsourcing with their associated emotions, the corresponding emotion experiencers and textual cues, related emotion causes and targets, as well as the reader‘s perception of the emotion of the headline. This annotation task is comparably challenging, given the large number of classes and roles to be identified. We therefore propose a multiphase annotation procedure in which we first find relevant instances with emotional content and then annotate the more fine-grained aspects. Finally, we develop a baseline for the task of automatic prediction of semantic role structures and discuss the results. The corpus we release enables further research on emotion classification, emotion intensity prediction, emotion cause detection, and supports further qualitative studies.
%U https://aclanthology.org/2020.lrec-1.194/
%P 1554-1566
Markdown (Informal)
[GoodNewsEveryone: A Corpus of News Headlines Annotated with Emotions, Semantic Roles, and Reader Perception](https://aclanthology.org/2020.lrec-1.194/) (Bostan et al., LREC 2020)
ACL