@inproceedings{han-etal-2020-analyzing,
title = "Analyzing Word Embedding Through Structural Equation Modeling",
author = "Han, Namgi and
Hayashi, Katsuhiko and
Miyao, Yusuke",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.225/",
pages = "1823--1832",
language = "eng",
ISBN = "979-10-95546-34-4",
abstract = "Many researchers have tried to predict the accuracies of extrinsic evaluation by using intrinsic evaluation to evaluate word embedding. The relationship between intrinsic and extrinsic evaluation, however, has only been studied with simple correlation analysis, which has difficulty capturing complex cause-effect relationships and integrating external factors such as the hyperparameters of word embedding. To tackle this problem, we employ partial least squares path modeling (PLS-PM), a method of structural equation modeling developed for causal analysis. We propose a causal diagram consisting of the evaluation results on the BATS, VecEval, and SentEval datasets, with a causal hypothesis that linguistic knowledge encoded in word embedding contributes to solving downstream tasks. Our PLS-PM models are estimated with 600 word embeddings, and we prove the existence of causal relations between linguistic knowledge evaluated on BATS and the accuracies of downstream tasks evaluated on VecEval and SentEval in our PLS-PM models. Moreover, we show that the PLS-PM models are useful for analyzing the effect of hyperparameters, including the training algorithm, corpus, dimension, and context window, and for validating the effectiveness of intrinsic evaluation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="han-etal-2020-analyzing">
<titleInfo>
<title>Analyzing Word Embedding Through Structural Equation Modeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Namgi</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katsuhiko</namePart>
<namePart type="family">Hayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>Many researchers have tried to predict the accuracies of extrinsic evaluation by using intrinsic evaluation to evaluate word embedding. The relationship between intrinsic and extrinsic evaluation, however, has only been studied with simple correlation analysis, which has difficulty capturing complex cause-effect relationships and integrating external factors such as the hyperparameters of word embedding. To tackle this problem, we employ partial least squares path modeling (PLS-PM), a method of structural equation modeling developed for causal analysis. We propose a causal diagram consisting of the evaluation results on the BATS, VecEval, and SentEval datasets, with a causal hypothesis that linguistic knowledge encoded in word embedding contributes to solving downstream tasks. Our PLS-PM models are estimated with 600 word embeddings, and we prove the existence of causal relations between linguistic knowledge evaluated on BATS and the accuracies of downstream tasks evaluated on VecEval and SentEval in our PLS-PM models. Moreover, we show that the PLS-PM models are useful for analyzing the effect of hyperparameters, including the training algorithm, corpus, dimension, and context window, and for validating the effectiveness of intrinsic evaluation.</abstract>
<identifier type="citekey">han-etal-2020-analyzing</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.225/</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>1823</start>
<end>1832</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analyzing Word Embedding Through Structural Equation Modeling
%A Han, Namgi
%A Hayashi, Katsuhiko
%A Miyao, Yusuke
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G eng
%F han-etal-2020-analyzing
%X Many researchers have tried to predict the accuracies of extrinsic evaluation by using intrinsic evaluation to evaluate word embedding. The relationship between intrinsic and extrinsic evaluation, however, has only been studied with simple correlation analysis, which has difficulty capturing complex cause-effect relationships and integrating external factors such as the hyperparameters of word embedding. To tackle this problem, we employ partial least squares path modeling (PLS-PM), a method of structural equation modeling developed for causal analysis. We propose a causal diagram consisting of the evaluation results on the BATS, VecEval, and SentEval datasets, with a causal hypothesis that linguistic knowledge encoded in word embedding contributes to solving downstream tasks. Our PLS-PM models are estimated with 600 word embeddings, and we prove the existence of causal relations between linguistic knowledge evaluated on BATS and the accuracies of downstream tasks evaluated on VecEval and SentEval in our PLS-PM models. Moreover, we show that the PLS-PM models are useful for analyzing the effect of hyperparameters, including the training algorithm, corpus, dimension, and context window, and for validating the effectiveness of intrinsic evaluation.
%U https://aclanthology.org/2020.lrec-1.225/
%P 1823-1832
Markdown (Informal)
[Analyzing Word Embedding Through Structural Equation Modeling](https://aclanthology.org/2020.lrec-1.225/) (Han et al., LREC 2020)
ACL