@inproceedings{maldonado-harabagiu-2020-language,
title = "The Language of Brain Signals: Natural Language Processing of Electroencephalography Reports",
author = "Maldonado, Ramon and
Harabagiu, Sanda",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.276/",
pages = "2268--2275",
language = "eng",
ISBN = "979-10-95546-34-4",
abstract = "Brain signals are captured by clinical electroencephalography (EEG) which is an excellent tool for probing neural function. When EEG tests are performed, a textual EEG report is generated by the neurologist to document the findings, thus using language that describes the brain signals and its clinical correlations. Even with the impetus provided by the BRAIN initiative (brainitititive.nih.gov), there are no annotations available in texts that capture language describing the brain activities and their correlations with various pathologies. In this paper we describe an annotation effort carried out on a large corpus of EEG reports, providing examples of EEG-specific and clinically relevant concepts. In addition, we detail our annotation schema for brain signal attributes. We also discuss the resulting annotation of long-distance relations between concepts in EEG reports. By exemplifying a self-attention joint-learning to predict similar annotations in the EEG report corpus, we discuss the promising results, hoping that our effort will inform the design of novel knowledge capture techniques that will include the language of brain signals."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maldonado-harabagiu-2020-language">
<titleInfo>
<title>The Language of Brain Signals: Natural Language Processing of Electroencephalography Reports</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ramon</namePart>
<namePart type="family">Maldonado</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanda</namePart>
<namePart type="family">Harabagiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>Brain signals are captured by clinical electroencephalography (EEG) which is an excellent tool for probing neural function. When EEG tests are performed, a textual EEG report is generated by the neurologist to document the findings, thus using language that describes the brain signals and its clinical correlations. Even with the impetus provided by the BRAIN initiative (brainitititive.nih.gov), there are no annotations available in texts that capture language describing the brain activities and their correlations with various pathologies. In this paper we describe an annotation effort carried out on a large corpus of EEG reports, providing examples of EEG-specific and clinically relevant concepts. In addition, we detail our annotation schema for brain signal attributes. We also discuss the resulting annotation of long-distance relations between concepts in EEG reports. By exemplifying a self-attention joint-learning to predict similar annotations in the EEG report corpus, we discuss the promising results, hoping that our effort will inform the design of novel knowledge capture techniques that will include the language of brain signals.</abstract>
<identifier type="citekey">maldonado-harabagiu-2020-language</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.276/</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>2268</start>
<end>2275</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Language of Brain Signals: Natural Language Processing of Electroencephalography Reports
%A Maldonado, Ramon
%A Harabagiu, Sanda
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G eng
%F maldonado-harabagiu-2020-language
%X Brain signals are captured by clinical electroencephalography (EEG) which is an excellent tool for probing neural function. When EEG tests are performed, a textual EEG report is generated by the neurologist to document the findings, thus using language that describes the brain signals and its clinical correlations. Even with the impetus provided by the BRAIN initiative (brainitititive.nih.gov), there are no annotations available in texts that capture language describing the brain activities and their correlations with various pathologies. In this paper we describe an annotation effort carried out on a large corpus of EEG reports, providing examples of EEG-specific and clinically relevant concepts. In addition, we detail our annotation schema for brain signal attributes. We also discuss the resulting annotation of long-distance relations between concepts in EEG reports. By exemplifying a self-attention joint-learning to predict similar annotations in the EEG report corpus, we discuss the promising results, hoping that our effort will inform the design of novel knowledge capture techniques that will include the language of brain signals.
%U https://aclanthology.org/2020.lrec-1.276/
%P 2268-2275
Markdown (Informal)
[The Language of Brain Signals: Natural Language Processing of Electroencephalography Reports](https://aclanthology.org/2020.lrec-1.276/) (Maldonado & Harabagiu, LREC 2020)
ACL