@inproceedings{ghaddar-langlais-2020-sedar,
title = "{SEDAR}: a Large Scale {F}rench-{E}nglish Financial Domain Parallel Corpus",
author = "Ghaddar, Abbas and
Langlais, Phillippe",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.442",
pages = "3595--3602",
abstract = "This paper describes the acquisition, preprocessing and characteristics of SEDAR, a large scale English-French parallel corpus for the financial domain. Our extensive experiments on machine translation show that SEDAR is essential to obtain good performance on finance. We observe a large gain in the performance of machine translation systems trained on SEDAR when tested on finance, which makes SEDAR suitable to study domain adaptation for neural machine translation. The first release of the corpus comprises 8.6 million high quality sentence pairs that are publicly available for research at \url{https://github.com/autorite/sedar-bitext}.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ghaddar-langlais-2020-sedar">
<titleInfo>
<title>SEDAR: a Large Scale French-English Financial Domain Parallel Corpus</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abbas</namePart>
<namePart type="family">Ghaddar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phillippe</namePart>
<namePart type="family">Langlais</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>This paper describes the acquisition, preprocessing and characteristics of SEDAR, a large scale English-French parallel corpus for the financial domain. Our extensive experiments on machine translation show that SEDAR is essential to obtain good performance on finance. We observe a large gain in the performance of machine translation systems trained on SEDAR when tested on finance, which makes SEDAR suitable to study domain adaptation for neural machine translation. The first release of the corpus comprises 8.6 million high quality sentence pairs that are publicly available for research at https://github.com/autorite/sedar-bitext.</abstract>
<identifier type="citekey">ghaddar-langlais-2020-sedar</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.442</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>3595</start>
<end>3602</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SEDAR: a Large Scale French-English Financial Domain Parallel Corpus
%A Ghaddar, Abbas
%A Langlais, Phillippe
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F ghaddar-langlais-2020-sedar
%X This paper describes the acquisition, preprocessing and characteristics of SEDAR, a large scale English-French parallel corpus for the financial domain. Our extensive experiments on machine translation show that SEDAR is essential to obtain good performance on finance. We observe a large gain in the performance of machine translation systems trained on SEDAR when tested on finance, which makes SEDAR suitable to study domain adaptation for neural machine translation. The first release of the corpus comprises 8.6 million high quality sentence pairs that are publicly available for research at https://github.com/autorite/sedar-bitext.
%U https://aclanthology.org/2020.lrec-1.442
%P 3595-3602
Markdown (Informal)
[SEDAR: a Large Scale French-English Financial Domain Parallel Corpus](https://aclanthology.org/2020.lrec-1.442) (Ghaddar & Langlais, LREC 2020)
ACL