@inproceedings{doval-etal-2020-robustness,
title = "On the Robustness of Unsupervised and Semi-supervised Cross-lingual Word Embedding Learning",
author = "Doval, Yerai and
Camacho-Collados, Jose and
Espinosa Anke, Luis and
Schockaert, Steven",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.495/",
pages = "4013--4023",
language = "eng",
ISBN = "979-10-95546-34-4",
abstract = "Cross-lingual word embeddings are vector representations of words in different languages where words with similar meaning are represented by similar vectors, regardless of the language. Recent developments which construct these embeddings by aligning monolingual spaces have shown that accurate alignments can be obtained with little or no supervision, which usually comes in the form of bilingual dictionaries. However, the focus has been on a particular controlled scenario for evaluation, and there is no strong evidence on how current state-of-the-art systems would fare with noisy text or for language pairs with major linguistic differences. In this paper we present an extensive evaluation over multiple cross-lingual embedding models, analyzing their strengths and limitations with respect to different variables such as target language, training corpora and amount of supervision. Our conclusions put in doubt the view that high-quality cross-lingual embeddings can always be learned without much supervision."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="doval-etal-2020-robustness">
<titleInfo>
<title>On the Robustness of Unsupervised and Semi-supervised Cross-lingual Word Embedding Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yerai</namePart>
<namePart type="family">Doval</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="family">Camacho-Collados</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Espinosa Anke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>Cross-lingual word embeddings are vector representations of words in different languages where words with similar meaning are represented by similar vectors, regardless of the language. Recent developments which construct these embeddings by aligning monolingual spaces have shown that accurate alignments can be obtained with little or no supervision, which usually comes in the form of bilingual dictionaries. However, the focus has been on a particular controlled scenario for evaluation, and there is no strong evidence on how current state-of-the-art systems would fare with noisy text or for language pairs with major linguistic differences. In this paper we present an extensive evaluation over multiple cross-lingual embedding models, analyzing their strengths and limitations with respect to different variables such as target language, training corpora and amount of supervision. Our conclusions put in doubt the view that high-quality cross-lingual embeddings can always be learned without much supervision.</abstract>
<identifier type="citekey">doval-etal-2020-robustness</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.495/</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>4013</start>
<end>4023</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Robustness of Unsupervised and Semi-supervised Cross-lingual Word Embedding Learning
%A Doval, Yerai
%A Camacho-Collados, Jose
%A Espinosa Anke, Luis
%A Schockaert, Steven
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G eng
%F doval-etal-2020-robustness
%X Cross-lingual word embeddings are vector representations of words in different languages where words with similar meaning are represented by similar vectors, regardless of the language. Recent developments which construct these embeddings by aligning monolingual spaces have shown that accurate alignments can be obtained with little or no supervision, which usually comes in the form of bilingual dictionaries. However, the focus has been on a particular controlled scenario for evaluation, and there is no strong evidence on how current state-of-the-art systems would fare with noisy text or for language pairs with major linguistic differences. In this paper we present an extensive evaluation over multiple cross-lingual embedding models, analyzing their strengths and limitations with respect to different variables such as target language, training corpora and amount of supervision. Our conclusions put in doubt the view that high-quality cross-lingual embeddings can always be learned without much supervision.
%U https://aclanthology.org/2020.lrec-1.495/
%P 4013-4023
Markdown (Informal)
[On the Robustness of Unsupervised and Semi-supervised Cross-lingual Word Embedding Learning](https://aclanthology.org/2020.lrec-1.495/) (Doval et al., LREC 2020)
ACL