TopicNet: Making Additive Regularisation for Topic Modelling Accessible
Victor Bulatov, Vasiliy Alekseev, Konstantin Vorontsov, Darya Polyudova, Eugenia Veselova, Alexey Goncharov, Evgeny Egorov
Abstract
This paper introduces TopicNet, a new Python module for topic modeling. This package, distributed under the MIT license, focuses on bringing additive regularization topic modelling (ARTM) to non-specialists using a general-purpose high-level language. The module features include powerful model visualization techniques, various training strategies, semi-automated model selection, support for user-defined goal metrics, and a modular approach to topic model training. Source code and documentation are available at https://github.com/machine-intelligence-laboratory/TopicNet- Anthology ID:
- 2020.lrec-1.833
- Volume:
- Proceedings of the Twelfth Language Resources and Evaluation Conference
- Month:
- May
- Year:
- 2020
- Address:
- Marseille, France
- Editors:
- Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis
- Venue:
- LREC
- SIG:
- Publisher:
- European Language Resources Association
- Note:
- Pages:
- 6745–6752
- Language:
- English
- URL:
- https://aclanthology.org/2020.lrec-1.833
- DOI:
- Bibkey:
- Cite (ACL):
- Victor Bulatov, Vasiliy Alekseev, Konstantin Vorontsov, Darya Polyudova, Eugenia Veselova, Alexey Goncharov, and Evgeny Egorov. 2020. TopicNet: Making Additive Regularisation for Topic Modelling Accessible. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 6745–6752, Marseille, France. European Language Resources Association.
- Cite (Informal):
- TopicNet: Making Additive Regularisation for Topic Modelling Accessible (Bulatov et al., LREC 2020)
- Copy Citation:
- PDF:
- https://aclanthology.org/2020.lrec-1.833.pdf
Export citation
@inproceedings{bulatov-etal-2020-topicnet, title = "{T}opic{N}et: Making Additive Regularisation for Topic Modelling Accessible", author = "Bulatov, Victor and Alekseev, Vasiliy and Vorontsov, Konstantin and Polyudova, Darya and Veselova, Eugenia and Goncharov, Alexey and Egorov, Evgeny", editor = "Calzolari, Nicoletta and B{\'e}chet, Fr{\'e}d{\'e}ric and Blache, Philippe and Choukri, Khalid and Cieri, Christopher and Declerck, Thierry and Goggi, Sara and Isahara, Hitoshi and Maegaard, Bente and Mariani, Joseph and Mazo, H{\'e}l{\`e}ne and Moreno, Asuncion and Odijk, Jan and Piperidis, Stelios", booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference", month = may, year = "2020", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2020.lrec-1.833", pages = "6745--6752", abstract = "This paper introduces TopicNet, a new Python module for topic modeling. This package, distributed under the MIT license, focuses on bringing additive regularization topic modelling (ARTM) to non-specialists using a general-purpose high-level language. The module features include powerful model visualization techniques, various training strategies, semi-automated model selection, support for user-defined goal metrics, and a modular approach to topic model training. Source code and documentation are available at \url{https://github.com/machine-intelligence-laboratory/TopicNet}", language = "English", ISBN = "979-10-95546-34-4", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="bulatov-etal-2020-topicnet"> <titleInfo> <title>TopicNet: Making Additive Regularisation for Topic Modelling Accessible</title> </titleInfo> <name type="personal"> <namePart type="given">Victor</namePart> <namePart type="family">Bulatov</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Vasiliy</namePart> <namePart type="family">Alekseev</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Konstantin</namePart> <namePart type="family">Vorontsov</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Darya</namePart> <namePart type="family">Polyudova</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Eugenia</namePart> <namePart type="family">Veselova</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexey</namePart> <namePart type="family">Goncharov</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Evgeny</namePart> <namePart type="family">Egorov</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2020-05</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <language> <languageTerm type="text">English</languageTerm> <languageTerm type="code" authority="iso639-2b">eng</languageTerm> </language> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title> </titleInfo> <name type="personal"> <namePart type="given">Nicoletta</namePart> <namePart type="family">Calzolari</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Frédéric</namePart> <namePart type="family">Béchet</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philippe</namePart> <namePart type="family">Blache</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Khalid</namePart> <namePart type="family">Choukri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christopher</namePart> <namePart type="family">Cieri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Thierry</namePart> <namePart type="family">Declerck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sara</namePart> <namePart type="family">Goggi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hitoshi</namePart> <namePart type="family">Isahara</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bente</namePart> <namePart type="family">Maegaard</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Joseph</namePart> <namePart type="family">Mariani</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hélène</namePart> <namePart type="family">Mazo</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Asuncion</namePart> <namePart type="family">Moreno</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jan</namePart> <namePart type="family">Odijk</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Stelios</namePart> <namePart type="family">Piperidis</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>European Language Resources Association</publisher> <place> <placeTerm type="text">Marseille, France</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> <identifier type="isbn">979-10-95546-34-4</identifier> </relatedItem> <abstract>This paper introduces TopicNet, a new Python module for topic modeling. This package, distributed under the MIT license, focuses on bringing additive regularization topic modelling (ARTM) to non-specialists using a general-purpose high-level language. The module features include powerful model visualization techniques, various training strategies, semi-automated model selection, support for user-defined goal metrics, and a modular approach to topic model training. Source code and documentation are available at https://github.com/machine-intelligence-laboratory/TopicNet</abstract> <identifier type="citekey">bulatov-etal-2020-topicnet</identifier> <location> <url>https://aclanthology.org/2020.lrec-1.833</url> </location> <part> <date>2020-05</date> <extent unit="page"> <start>6745</start> <end>6752</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T TopicNet: Making Additive Regularisation for Topic Modelling Accessible %A Bulatov, Victor %A Alekseev, Vasiliy %A Vorontsov, Konstantin %A Polyudova, Darya %A Veselova, Eugenia %A Goncharov, Alexey %A Egorov, Evgeny %Y Calzolari, Nicoletta %Y Béchet, Frédéric %Y Blache, Philippe %Y Choukri, Khalid %Y Cieri, Christopher %Y Declerck, Thierry %Y Goggi, Sara %Y Isahara, Hitoshi %Y Maegaard, Bente %Y Mariani, Joseph %Y Mazo, Hélène %Y Moreno, Asuncion %Y Odijk, Jan %Y Piperidis, Stelios %S Proceedings of the Twelfth Language Resources and Evaluation Conference %D 2020 %8 May %I European Language Resources Association %C Marseille, France %@ 979-10-95546-34-4 %G English %F bulatov-etal-2020-topicnet %X This paper introduces TopicNet, a new Python module for topic modeling. This package, distributed under the MIT license, focuses on bringing additive regularization topic modelling (ARTM) to non-specialists using a general-purpose high-level language. The module features include powerful model visualization techniques, various training strategies, semi-automated model selection, support for user-defined goal metrics, and a modular approach to topic model training. Source code and documentation are available at https://github.com/machine-intelligence-laboratory/TopicNet %U https://aclanthology.org/2020.lrec-1.833 %P 6745-6752
Markdown (Informal)
[TopicNet: Making Additive Regularisation for Topic Modelling Accessible](https://aclanthology.org/2020.lrec-1.833) (Bulatov et al., LREC 2020)
- TopicNet: Making Additive Regularisation for Topic Modelling Accessible (Bulatov et al., LREC 2020)
ACL
- Victor Bulatov, Vasiliy Alekseev, Konstantin Vorontsov, Darya Polyudova, Eugenia Veselova, Alexey Goncharov, and Evgeny Egorov. 2020. TopicNet: Making Additive Regularisation for Topic Modelling Accessible. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 6745–6752, Marseille, France. European Language Resources Association.