@inproceedings{pickard-2020-comparing,
title = "Comparing word2vec and {G}lo{V}e for Automatic Measurement of {MWE} Compositionality",
author = "Pickard, Thomas",
editor = "Markantonatou, Stella and
McCrae, John and
Mitrovi{\'c}, Jelena and
Tiberius, Carole and
Ramisch, Carlos and
Vaidya, Ashwini and
Osenova, Petya and
Savary, Agata",
booktitle = "Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons",
month = dec,
year = "2020",
address = "online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.mwe-1.12",
pages = "95--100",
abstract = "This paper explores the use of word2vec and GloVe embeddings for unsupervised measurement of the semantic compositionality of MWE candidates. Through comparison with several human-annotated reference sets, we find word2vec to be substantively superior to GloVe for this task. We also find Simple English Wikipedia to be a poor-quality resource for compositionality assessment, but demonstrate that a sample of 10{\%} of sentences in the English Wikipedia can provide a conveniently tractable corpus with only moderate reduction in the quality of outputs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pickard-2020-comparing">
<titleInfo>
<title>Comparing word2vec and GloVe for Automatic Measurement of MWE Compositionality</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Pickard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stella</namePart>
<namePart type="family">Markantonatou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jelena</namePart>
<namePart type="family">Mitrović</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carole</namePart>
<namePart type="family">Tiberius</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Ramisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashwini</namePart>
<namePart type="family">Vaidya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Petya</namePart>
<namePart type="family">Osenova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agata</namePart>
<namePart type="family">Savary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper explores the use of word2vec and GloVe embeddings for unsupervised measurement of the semantic compositionality of MWE candidates. Through comparison with several human-annotated reference sets, we find word2vec to be substantively superior to GloVe for this task. We also find Simple English Wikipedia to be a poor-quality resource for compositionality assessment, but demonstrate that a sample of 10% of sentences in the English Wikipedia can provide a conveniently tractable corpus with only moderate reduction in the quality of outputs.</abstract>
<identifier type="citekey">pickard-2020-comparing</identifier>
<location>
<url>https://aclanthology.org/2020.mwe-1.12</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>95</start>
<end>100</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comparing word2vec and GloVe for Automatic Measurement of MWE Compositionality
%A Pickard, Thomas
%Y Markantonatou, Stella
%Y McCrae, John
%Y Mitrović, Jelena
%Y Tiberius, Carole
%Y Ramisch, Carlos
%Y Vaidya, Ashwini
%Y Osenova, Petya
%Y Savary, Agata
%S Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons
%D 2020
%8 December
%I Association for Computational Linguistics
%C online
%F pickard-2020-comparing
%X This paper explores the use of word2vec and GloVe embeddings for unsupervised measurement of the semantic compositionality of MWE candidates. Through comparison with several human-annotated reference sets, we find word2vec to be substantively superior to GloVe for this task. We also find Simple English Wikipedia to be a poor-quality resource for compositionality assessment, but demonstrate that a sample of 10% of sentences in the English Wikipedia can provide a conveniently tractable corpus with only moderate reduction in the quality of outputs.
%U https://aclanthology.org/2020.mwe-1.12
%P 95-100
Markdown (Informal)
[Comparing word2vec and GloVe for Automatic Measurement of MWE Compositionality](https://aclanthology.org/2020.mwe-1.12) (Pickard, MWE 2020)
ACL