@inproceedings{navigli-2020-invited,
title = "Invited Talk: Generationary or: {``}How We Went beyond Sense Inventories and Learned to Gloss{''}",
author = "Navigli, Roberto",
editor = "Markantonatou, Stella and
McCrae, John and
Mitrovi{\'c}, Jelena and
Tiberius, Carole and
Ramisch, Carlos and
Vaidya, Ashwini and
Osenova, Petya and
Savary, Agata",
booktitle = "Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons",
month = dec,
year = "2020",
address = "online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.mwe-1.9",
pages = "73",
abstract = "In this talk I present Generationary, an approach that goes beyond the mainstream assumption that word senses can be represented as discrete items of a predefined inventory, and put forward a unified model which produces contextualized definitions for arbitrary lexical items, from words to phrases and even sentences. Generationary employs a novel span-based encoding scheme to fine-tune an English pre-trained Encoder-Decoder system and generate new definitions. Our model outperforms previous approaches in the generative task of Definition Modeling in many settings, but it also matches or surpasses the state of the art in discriminative tasks such as Word Sense Disambiguation and Word-in-Context. I also show that Generationary benefits from training on definitions from multiple inventories, with strong gains across benchmarks, including a novel dataset of definitions for free adjective-noun phrases, and discuss interesting examples of generated definitions. Joint work with Michele Bevilacqua and Marco Maru.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="navigli-2020-invited">
<titleInfo>
<title>Invited Talk: Generationary or: “How We Went beyond Sense Inventories and Learned to Gloss”</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stella</namePart>
<namePart type="family">Markantonatou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jelena</namePart>
<namePart type="family">Mitrović</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carole</namePart>
<namePart type="family">Tiberius</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Ramisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashwini</namePart>
<namePart type="family">Vaidya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Petya</namePart>
<namePart type="family">Osenova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agata</namePart>
<namePart type="family">Savary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this talk I present Generationary, an approach that goes beyond the mainstream assumption that word senses can be represented as discrete items of a predefined inventory, and put forward a unified model which produces contextualized definitions for arbitrary lexical items, from words to phrases and even sentences. Generationary employs a novel span-based encoding scheme to fine-tune an English pre-trained Encoder-Decoder system and generate new definitions. Our model outperforms previous approaches in the generative task of Definition Modeling in many settings, but it also matches or surpasses the state of the art in discriminative tasks such as Word Sense Disambiguation and Word-in-Context. I also show that Generationary benefits from training on definitions from multiple inventories, with strong gains across benchmarks, including a novel dataset of definitions for free adjective-noun phrases, and discuss interesting examples of generated definitions. Joint work with Michele Bevilacqua and Marco Maru.</abstract>
<identifier type="citekey">navigli-2020-invited</identifier>
<location>
<url>https://aclanthology.org/2020.mwe-1.9</url>
</location>
<part>
<date>2020-12</date>
<detail type="page"><number>73</number></detail>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Invited Talk: Generationary or: “How We Went beyond Sense Inventories and Learned to Gloss”
%A Navigli, Roberto
%Y Markantonatou, Stella
%Y McCrae, John
%Y Mitrović, Jelena
%Y Tiberius, Carole
%Y Ramisch, Carlos
%Y Vaidya, Ashwini
%Y Osenova, Petya
%Y Savary, Agata
%S Proceedings of the Joint Workshop on Multiword Expressions and Electronic Lexicons
%D 2020
%8 December
%I Association for Computational Linguistics
%C online
%F navigli-2020-invited
%X In this talk I present Generationary, an approach that goes beyond the mainstream assumption that word senses can be represented as discrete items of a predefined inventory, and put forward a unified model which produces contextualized definitions for arbitrary lexical items, from words to phrases and even sentences. Generationary employs a novel span-based encoding scheme to fine-tune an English pre-trained Encoder-Decoder system and generate new definitions. Our model outperforms previous approaches in the generative task of Definition Modeling in many settings, but it also matches or surpasses the state of the art in discriminative tasks such as Word Sense Disambiguation and Word-in-Context. I also show that Generationary benefits from training on definitions from multiple inventories, with strong gains across benchmarks, including a novel dataset of definitions for free adjective-noun phrases, and discuss interesting examples of generated definitions. Joint work with Michele Bevilacqua and Marco Maru.
%U https://aclanthology.org/2020.mwe-1.9
%P 73
Markdown (Informal)
[Invited Talk: Generationary or: “How We Went beyond Sense Inventories and Learned to Gloss”](https://aclanthology.org/2020.mwe-1.9) (Navigli, MWE 2020)
ACL