@inproceedings{addawood-etal-2020-tracking,
title = "Tracking And Understanding Public Reaction During {COVID}-19: {S}audi {A}rabia As A Use Case",
author = "Addawood, Aseel and
Alsuwailem, Alhanouf and
Alohali, Ali and
Alajaji, Dalal and
Alturki, Mashail and
Alsuhaibani, Jaida and
Aljabli, Fawziah",
editor = "Verspoor, Karin and
Cohen, Kevin Bretonnel and
Conway, Michael and
de Bruijn, Berry and
Dredze, Mark and
Mihalcea, Rada and
Wallace, Byron",
booktitle = "Proceedings of the 1st Workshop on {NLP} for {COVID}-19 (Part 2) at {EMNLP} 2020",
month = dec,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.nlpcovid19-2.24/",
doi = "10.18653/v1/2020.nlpcovid19-2.24",
abstract = "The coronavirus disease of 2019 (COVID-19) has a huge impact on economies and societies around the world. While governments are taking extreme measures to reduce the spread of the virus, people are getting affected by these new measures. With restrictions like lockdown and social distancing, it became important to understand the emotional response of the public towards the pandemic. In this paper, we study the reaction of Saudi Arabia citizens towards the pandemic. We utilize a collection of Arabic tweets that were sent during 2020, primarily through hashtags that were originated from Saudi Arabia. Our results showed that people had kept a positive reaction towards the pandemic. This positive reaction was at its highest at the beginning of the COVID-19 crisis and started to decline as time passes. Overall, the results showed that people were so supportive of each other through this pandemic. This research can help researchers and policymakers in understanding the emotional effect of a pandemic on societies."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="addawood-etal-2020-tracking">
<titleInfo>
<title>Tracking And Understanding Public Reaction During COVID-19: Saudi Arabia As A Use Case</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aseel</namePart>
<namePart type="family">Addawood</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alhanouf</namePart>
<namePart type="family">Alsuwailem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Alohali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dalal</namePart>
<namePart type="family">Alajaji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mashail</namePart>
<namePart type="family">Alturki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaida</namePart>
<namePart type="family">Alsuhaibani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fawziah</namePart>
<namePart type="family">Aljabli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Karin</namePart>
<namePart type="family">Verspoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Conway</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Berry</namePart>
<namePart type="family">de Bruijn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Dredze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rada</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Byron</namePart>
<namePart type="family">Wallace</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The coronavirus disease of 2019 (COVID-19) has a huge impact on economies and societies around the world. While governments are taking extreme measures to reduce the spread of the virus, people are getting affected by these new measures. With restrictions like lockdown and social distancing, it became important to understand the emotional response of the public towards the pandemic. In this paper, we study the reaction of Saudi Arabia citizens towards the pandemic. We utilize a collection of Arabic tweets that were sent during 2020, primarily through hashtags that were originated from Saudi Arabia. Our results showed that people had kept a positive reaction towards the pandemic. This positive reaction was at its highest at the beginning of the COVID-19 crisis and started to decline as time passes. Overall, the results showed that people were so supportive of each other through this pandemic. This research can help researchers and policymakers in understanding the emotional effect of a pandemic on societies.</abstract>
<identifier type="citekey">addawood-etal-2020-tracking</identifier>
<identifier type="doi">10.18653/v1/2020.nlpcovid19-2.24</identifier>
<location>
<url>https://aclanthology.org/2020.nlpcovid19-2.24/</url>
</location>
<part>
<date>2020-12</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Tracking And Understanding Public Reaction During COVID-19: Saudi Arabia As A Use Case
%A Addawood, Aseel
%A Alsuwailem, Alhanouf
%A Alohali, Ali
%A Alajaji, Dalal
%A Alturki, Mashail
%A Alsuhaibani, Jaida
%A Aljabli, Fawziah
%Y Verspoor, Karin
%Y Cohen, Kevin Bretonnel
%Y Conway, Michael
%Y de Bruijn, Berry
%Y Dredze, Mark
%Y Mihalcea, Rada
%Y Wallace, Byron
%S Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020
%D 2020
%8 December
%I Association for Computational Linguistics
%C Online
%F addawood-etal-2020-tracking
%X The coronavirus disease of 2019 (COVID-19) has a huge impact on economies and societies around the world. While governments are taking extreme measures to reduce the spread of the virus, people are getting affected by these new measures. With restrictions like lockdown and social distancing, it became important to understand the emotional response of the public towards the pandemic. In this paper, we study the reaction of Saudi Arabia citizens towards the pandemic. We utilize a collection of Arabic tweets that were sent during 2020, primarily through hashtags that were originated from Saudi Arabia. Our results showed that people had kept a positive reaction towards the pandemic. This positive reaction was at its highest at the beginning of the COVID-19 crisis and started to decline as time passes. Overall, the results showed that people were so supportive of each other through this pandemic. This research can help researchers and policymakers in understanding the emotional effect of a pandemic on societies.
%R 10.18653/v1/2020.nlpcovid19-2.24
%U https://aclanthology.org/2020.nlpcovid19-2.24/
%U https://doi.org/10.18653/v1/2020.nlpcovid19-2.24
Markdown (Informal)
[Tracking And Understanding Public Reaction During COVID-19: Saudi Arabia As A Use Case](https://aclanthology.org/2020.nlpcovid19-2.24/) (Addawood et al., NLP-COVID19 2020)
ACL