@inproceedings{lwowski-najafirad-2020-covid,
title = "{COVID}-19 Surveillance through {T}witter using Self-Supervised and Few Shot Learning",
author = "Lwowski, Brandon and
Najafirad, Peyman",
editor = "Verspoor, Karin and
Cohen, Kevin Bretonnel and
Conway, Michael and
de Bruijn, Berry and
Dredze, Mark and
Mihalcea, Rada and
Wallace, Byron",
booktitle = "Proceedings of the 1st Workshop on {NLP} for {COVID}-19 (Part 2) at {EMNLP} 2020",
month = dec,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.nlpcovid19-2.9",
doi = "10.18653/v1/2020.nlpcovid19-2.9",
abstract = "Public health surveillance and tracking virus via social media can be a useful digital tool for contact tracing and preventing the spread of the virus. Nowadays, large volumes of COVID-19 tweets can quickly be processed in real-time to offer information to researchers. Nonetheless, due to the absence of labeled data for COVID-19, the preliminary supervised classifier or semi-supervised self-labeled methods will not handle non-spherical data with adequate accuracy. With the seasonal influenza and novel Coronavirus having many similar symptoms, we propose using few shot learning to fine-tune a semi-supervised model built on unlabeled COVID-19 and previously labeled influenza dataset that can provide in- sights into COVID-19 that have not been investigated. The experimental results show the efficacy of the proposed model with an accuracy of 86{\%}, identification of Covid-19 related discussion using recently collected tweets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lwowski-najafirad-2020-covid">
<titleInfo>
<title>COVID-19 Surveillance through Twitter using Self-Supervised and Few Shot Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Brandon</namePart>
<namePart type="family">Lwowski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peyman</namePart>
<namePart type="family">Najafirad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Karin</namePart>
<namePart type="family">Verspoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Conway</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Berry</namePart>
<namePart type="family">de Bruijn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Dredze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rada</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Byron</namePart>
<namePart type="family">Wallace</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Public health surveillance and tracking virus via social media can be a useful digital tool for contact tracing and preventing the spread of the virus. Nowadays, large volumes of COVID-19 tweets can quickly be processed in real-time to offer information to researchers. Nonetheless, due to the absence of labeled data for COVID-19, the preliminary supervised classifier or semi-supervised self-labeled methods will not handle non-spherical data with adequate accuracy. With the seasonal influenza and novel Coronavirus having many similar symptoms, we propose using few shot learning to fine-tune a semi-supervised model built on unlabeled COVID-19 and previously labeled influenza dataset that can provide in- sights into COVID-19 that have not been investigated. The experimental results show the efficacy of the proposed model with an accuracy of 86%, identification of Covid-19 related discussion using recently collected tweets.</abstract>
<identifier type="citekey">lwowski-najafirad-2020-covid</identifier>
<identifier type="doi">10.18653/v1/2020.nlpcovid19-2.9</identifier>
<location>
<url>https://aclanthology.org/2020.nlpcovid19-2.9</url>
</location>
<part>
<date>2020-12</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T COVID-19 Surveillance through Twitter using Self-Supervised and Few Shot Learning
%A Lwowski, Brandon
%A Najafirad, Peyman
%Y Verspoor, Karin
%Y Cohen, Kevin Bretonnel
%Y Conway, Michael
%Y de Bruijn, Berry
%Y Dredze, Mark
%Y Mihalcea, Rada
%Y Wallace, Byron
%S Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020
%D 2020
%8 December
%I Association for Computational Linguistics
%C Online
%F lwowski-najafirad-2020-covid
%X Public health surveillance and tracking virus via social media can be a useful digital tool for contact tracing and preventing the spread of the virus. Nowadays, large volumes of COVID-19 tweets can quickly be processed in real-time to offer information to researchers. Nonetheless, due to the absence of labeled data for COVID-19, the preliminary supervised classifier or semi-supervised self-labeled methods will not handle non-spherical data with adequate accuracy. With the seasonal influenza and novel Coronavirus having many similar symptoms, we propose using few shot learning to fine-tune a semi-supervised model built on unlabeled COVID-19 and previously labeled influenza dataset that can provide in- sights into COVID-19 that have not been investigated. The experimental results show the efficacy of the proposed model with an accuracy of 86%, identification of Covid-19 related discussion using recently collected tweets.
%R 10.18653/v1/2020.nlpcovid19-2.9
%U https://aclanthology.org/2020.nlpcovid19-2.9
%U https://doi.org/10.18653/v1/2020.nlpcovid19-2.9
Markdown (Informal)
[COVID-19 Surveillance through Twitter using Self-Supervised and Few Shot Learning](https://aclanthology.org/2020.nlpcovid19-2.9) (Lwowski & Najafirad, NLP-COVID19 2020)
ACL