@inproceedings{kerkvliet-etal-2020-mentions,
title = "Who mentions whom? Recognizing political actors in proceedings",
author = "Kerkvliet, Lennart and
Kamps, Jaap and
Marx, Maarten",
editor = "Fi{\v{s}}er, Darja and
Eskevich, Maria and
de Jong, Franciska",
booktitle = "Proceedings of the Second ParlaCLARIN Workshop",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.parlaclarin-1.7",
pages = "35--39",
abstract = "We show that it is straightforward to train a state of the art named entity tagger (spaCy) to recognize political actors in Dutch parliamentary proceedings with high accuracy. The tagger was trained on 3.4K manually labeled examples, which were created in a modest 2.5 days work. This resource is made available on github. Besides proper nouns of persons and political parties, the tagger can recognize quite complex definite descriptions referring to cabinet ministers, ministries, and parliamentary committees. We also provide a demo search engine which employs the tagged entities in its SERP and result summaries.",
language = "English",
ISBN = "979-10-95546-47-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kerkvliet-etal-2020-mentions">
<titleInfo>
<title>Who mentions whom? Recognizing political actors in proceedings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lennart</namePart>
<namePart type="family">Kerkvliet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaap</namePart>
<namePart type="family">Kamps</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maarten</namePart>
<namePart type="family">Marx</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second ParlaCLARIN Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Darja</namePart>
<namePart type="family">Fišer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Eskevich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Franciska</namePart>
<namePart type="family">de Jong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-47-4</identifier>
</relatedItem>
<abstract>We show that it is straightforward to train a state of the art named entity tagger (spaCy) to recognize political actors in Dutch parliamentary proceedings with high accuracy. The tagger was trained on 3.4K manually labeled examples, which were created in a modest 2.5 days work. This resource is made available on github. Besides proper nouns of persons and political parties, the tagger can recognize quite complex definite descriptions referring to cabinet ministers, ministries, and parliamentary committees. We also provide a demo search engine which employs the tagged entities in its SERP and result summaries.</abstract>
<identifier type="citekey">kerkvliet-etal-2020-mentions</identifier>
<location>
<url>https://aclanthology.org/2020.parlaclarin-1.7</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>35</start>
<end>39</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Who mentions whom? Recognizing political actors in proceedings
%A Kerkvliet, Lennart
%A Kamps, Jaap
%A Marx, Maarten
%Y Fišer, Darja
%Y Eskevich, Maria
%Y de Jong, Franciska
%S Proceedings of the Second ParlaCLARIN Workshop
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-47-4
%G English
%F kerkvliet-etal-2020-mentions
%X We show that it is straightforward to train a state of the art named entity tagger (spaCy) to recognize political actors in Dutch parliamentary proceedings with high accuracy. The tagger was trained on 3.4K manually labeled examples, which were created in a modest 2.5 days work. This resource is made available on github. Besides proper nouns of persons and political parties, the tagger can recognize quite complex definite descriptions referring to cabinet ministers, ministries, and parliamentary committees. We also provide a demo search engine which employs the tagged entities in its SERP and result summaries.
%U https://aclanthology.org/2020.parlaclarin-1.7
%P 35-39
Markdown (Informal)
[Who mentions whom? Recognizing political actors in proceedings](https://aclanthology.org/2020.parlaclarin-1.7) (Kerkvliet et al., ParlaCLARIN 2020)
ACL