@inproceedings{ljubesic-etal-2020-lilah,
title = "The {L}i{L}a{H} Emotion Lexicon of {C}roatian, {D}utch and {S}lovene",
author = "Ljube{\v{s}}i{\'c}, Nikola and
Markov, Ilia and
Fi{\v{s}}er, Darja and
Daelemans, Walter",
editor = "Nissim, Malvina and
Patti, Viviana and
Plank, Barbara and
Durmus, Esin",
booktitle = "Proceedings of the Third Workshop on Computational Modeling of People's Opinions, Personality, and Emotion's in Social Media",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.peoples-1.15",
pages = "153--157",
abstract = "In this paper, we present emotion lexicons of Croatian, Dutch and Slovene, based on manually corrected automatic translations of the English NRC Emotion lexicon. We evaluate the impact of the translation changes by measuring the change in supervised classification results of socially unacceptable utterances when lexicon information is used for feature construction. We further showcase the usage of the lexicons by calculating the difference in emotion distributions in texts containing and not containing socially unacceptable discourse, comparing them across four languages (English, Croatian, Dutch, Slovene) and two topics (migrants and LGBT). We show significant and consistent improvements in automatic classification across all languages and topics, as well as consistent (and expected) emotion distributions across all languages and topics, proving for the manually corrected lexicons to be a useful addition to the severely lacking area of emotion lexicons, the crucial resource for emotive analysis of text.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ljubesic-etal-2020-lilah">
<titleInfo>
<title>The LiLaH Emotion Lexicon of Croatian, Dutch and Slovene</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="family">Ljubešić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilia</namePart>
<namePart type="family">Markov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Darja</namePart>
<namePart type="family">Fišer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Walter</namePart>
<namePart type="family">Daelemans</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Computational Modeling of People’s Opinions, Personality, and Emotion’s in Social Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Viviana</namePart>
<namePart type="family">Patti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Esin</namePart>
<namePart type="family">Durmus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present emotion lexicons of Croatian, Dutch and Slovene, based on manually corrected automatic translations of the English NRC Emotion lexicon. We evaluate the impact of the translation changes by measuring the change in supervised classification results of socially unacceptable utterances when lexicon information is used for feature construction. We further showcase the usage of the lexicons by calculating the difference in emotion distributions in texts containing and not containing socially unacceptable discourse, comparing them across four languages (English, Croatian, Dutch, Slovene) and two topics (migrants and LGBT). We show significant and consistent improvements in automatic classification across all languages and topics, as well as consistent (and expected) emotion distributions across all languages and topics, proving for the manually corrected lexicons to be a useful addition to the severely lacking area of emotion lexicons, the crucial resource for emotive analysis of text.</abstract>
<identifier type="citekey">ljubesic-etal-2020-lilah</identifier>
<location>
<url>https://aclanthology.org/2020.peoples-1.15</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>153</start>
<end>157</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The LiLaH Emotion Lexicon of Croatian, Dutch and Slovene
%A Ljubešić, Nikola
%A Markov, Ilia
%A Fišer, Darja
%A Daelemans, Walter
%Y Nissim, Malvina
%Y Patti, Viviana
%Y Plank, Barbara
%Y Durmus, Esin
%S Proceedings of the Third Workshop on Computational Modeling of People’s Opinions, Personality, and Emotion’s in Social Media
%D 2020
%8 December
%I Association for Computational Linguistics
%C Barcelona, Spain (Online)
%F ljubesic-etal-2020-lilah
%X In this paper, we present emotion lexicons of Croatian, Dutch and Slovene, based on manually corrected automatic translations of the English NRC Emotion lexicon. We evaluate the impact of the translation changes by measuring the change in supervised classification results of socially unacceptable utterances when lexicon information is used for feature construction. We further showcase the usage of the lexicons by calculating the difference in emotion distributions in texts containing and not containing socially unacceptable discourse, comparing them across four languages (English, Croatian, Dutch, Slovene) and two topics (migrants and LGBT). We show significant and consistent improvements in automatic classification across all languages and topics, as well as consistent (and expected) emotion distributions across all languages and topics, proving for the manually corrected lexicons to be a useful addition to the severely lacking area of emotion lexicons, the crucial resource for emotive analysis of text.
%U https://aclanthology.org/2020.peoples-1.15
%P 153-157
Markdown (Informal)
[The LiLaH Emotion Lexicon of Croatian, Dutch and Slovene](https://aclanthology.org/2020.peoples-1.15) (Ljubešić et al., PEOPLES 2020)
ACL
- Nikola Ljubešić, Ilia Markov, Darja Fišer, and Walter Daelemans. 2020. The LiLaH Emotion Lexicon of Croatian, Dutch and Slovene. In Proceedings of the Third Workshop on Computational Modeling of People's Opinions, Personality, and Emotion's in Social Media, pages 153–157, Barcelona, Spain (Online). Association for Computational Linguistics.