@inproceedings{chauhan-diddee-2020-psuedoprop,
title = "{P}suedo{P}rop at {S}em{E}val-2020 Task 11: Propaganda Span Detection Using {BERT}-{CRF} and Ensemble Sentence Level Classifier",
author = "Chauhan, Aniruddha and
Diddee, Harshita",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.233/",
doi = "10.18653/v1/2020.semeval-1.233",
pages = "1779--1785",
abstract = "This paper explains our teams' submission to the Shared Task of Fine-Grained Propaganda Detection in which we propose a sequential BERT-CRF based Span Identification model where the fine-grained detection is carried out only on the articles that are flagged as containing propaganda by an ensemble SLC model. We propose this setup bearing in mind the practicality of this approach in identifying propaganda spans in the exponentially increasing content base where the fine-tuned analysis of the entire data repository may not be the optimal choice due to its massive computational resource requirements. We present our analysis on different voting ensembles for the SLC model. Our system ranks 14th on the test set and 22nd on the development set and with an F1 score of 0.41 and 0.39 respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chauhan-diddee-2020-psuedoprop">
<titleInfo>
<title>PsuedoProp at SemEval-2020 Task 11: Propaganda Span Detection Using BERT-CRF and Ensemble Sentence Level Classifier</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aniruddha</namePart>
<namePart type="family">Chauhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harshita</namePart>
<namePart type="family">Diddee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper explains our teams’ submission to the Shared Task of Fine-Grained Propaganda Detection in which we propose a sequential BERT-CRF based Span Identification model where the fine-grained detection is carried out only on the articles that are flagged as containing propaganda by an ensemble SLC model. We propose this setup bearing in mind the practicality of this approach in identifying propaganda spans in the exponentially increasing content base where the fine-tuned analysis of the entire data repository may not be the optimal choice due to its massive computational resource requirements. We present our analysis on different voting ensembles for the SLC model. Our system ranks 14th on the test set and 22nd on the development set and with an F1 score of 0.41 and 0.39 respectively.</abstract>
<identifier type="citekey">chauhan-diddee-2020-psuedoprop</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.233</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.233/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1779</start>
<end>1785</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PsuedoProp at SemEval-2020 Task 11: Propaganda Span Detection Using BERT-CRF and Ensemble Sentence Level Classifier
%A Chauhan, Aniruddha
%A Diddee, Harshita
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F chauhan-diddee-2020-psuedoprop
%X This paper explains our teams’ submission to the Shared Task of Fine-Grained Propaganda Detection in which we propose a sequential BERT-CRF based Span Identification model where the fine-grained detection is carried out only on the articles that are flagged as containing propaganda by an ensemble SLC model. We propose this setup bearing in mind the practicality of this approach in identifying propaganda spans in the exponentially increasing content base where the fine-tuned analysis of the entire data repository may not be the optimal choice due to its massive computational resource requirements. We present our analysis on different voting ensembles for the SLC model. Our system ranks 14th on the test set and 22nd on the development set and with an F1 score of 0.41 and 0.39 respectively.
%R 10.18653/v1/2020.semeval-1.233
%U https://aclanthology.org/2020.semeval-1.233/
%U https://doi.org/10.18653/v1/2020.semeval-1.233
%P 1779-1785
Markdown (Informal)
[PsuedoProp at SemEval-2020 Task 11: Propaganda Span Detection Using BERT-CRF and Ensemble Sentence Level Classifier](https://aclanthology.org/2020.semeval-1.233/) (Chauhan & Diddee, SemEval 2020)
ACL