@inproceedings{nayel-2020-nayel,
title = "{NAYEL} at {S}em{E}val-2020 Task 12: {TF}/{IDF}-Based Approach for Automatic Offensive Language Detection in {A}rabic Tweets",
author = "Nayel, Hamada",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.276/",
doi = "10.18653/v1/2020.semeval-1.276",
pages = "2086--2089",
abstract = "In this paper, we present the system submitted to {\textquotedblleft}SemEval-2020 Task 12{\textquotedblright}. The proposed system aims at automatically identify the Offensive Language in Arabic Tweets. A machine learning based approach has been used to design our system. We implemented a linear classifier with Stochastic Gradient Descent (SGD) as optimization algorithm. Our model reported 84.20{\%}, 81.82{\%} f1-score on development set and test set respectively. The best performed system and the system in the last rank reported 90.17{\%} and 44.51{\%} f1-score on test set respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nayel-2020-nayel">
<titleInfo>
<title>NAYEL at SemEval-2020 Task 12: TF/IDF-Based Approach for Automatic Offensive Language Detection in Arabic Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hamada</namePart>
<namePart type="family">Nayel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present the system submitted to “SemEval-2020 Task 12”. The proposed system aims at automatically identify the Offensive Language in Arabic Tweets. A machine learning based approach has been used to design our system. We implemented a linear classifier with Stochastic Gradient Descent (SGD) as optimization algorithm. Our model reported 84.20%, 81.82% f1-score on development set and test set respectively. The best performed system and the system in the last rank reported 90.17% and 44.51% f1-score on test set respectively.</abstract>
<identifier type="citekey">nayel-2020-nayel</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.276</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.276/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>2086</start>
<end>2089</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NAYEL at SemEval-2020 Task 12: TF/IDF-Based Approach for Automatic Offensive Language Detection in Arabic Tweets
%A Nayel, Hamada
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F nayel-2020-nayel
%X In this paper, we present the system submitted to “SemEval-2020 Task 12”. The proposed system aims at automatically identify the Offensive Language in Arabic Tweets. A machine learning based approach has been used to design our system. We implemented a linear classifier with Stochastic Gradient Descent (SGD) as optimization algorithm. Our model reported 84.20%, 81.82% f1-score on development set and test set respectively. The best performed system and the system in the last rank reported 90.17% and 44.51% f1-score on test set respectively.
%R 10.18653/v1/2020.semeval-1.276
%U https://aclanthology.org/2020.semeval-1.276/
%U https://doi.org/10.18653/v1/2020.semeval-1.276
%P 2086-2089
Markdown (Informal)
[NAYEL at SemEval-2020 Task 12: TF/IDF-Based Approach for Automatic Offensive Language Detection in Arabic Tweets](https://aclanthology.org/2020.semeval-1.276/) (Nayel, SemEval 2020)
ACL