@inproceedings{mukushev-etal-2020-automatic,
title = "Automatic Classification of Handshapes in {R}ussian {S}ign {L}anguage",
author = "Mukushev, Medet and
Imashev, Alfarabi and
Kimmelman, Vadim and
Sandygulova, Anara",
editor = "Efthimiou, Eleni and
Fotinea, Stavroula-Evita and
Hanke, Thomas and
Hochgesang, Julie A. and
Kristoffersen, Jette and
Mesch, Johanna",
booktitle = "Proceedings of the LREC2020 9th Workshop on the Representation and Processing of Sign Languages: Sign Language Resources in the Service of the Language Community, Technological Challenges and Application Perspectives",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/2020.signlang-1.27/",
pages = "165--170",
language = "eng",
ISBN = "979-10-95546-54-2",
abstract = "Handshapes are one of the basic parameters of signs, and any phonological or phonetic analysis of a sign language must account for handshapes. Many sign languages have been carefully analysed by sign language linguists to create handshape inventories. This has theoretical implications, but also applied use, as it is important due to the need of generating corpora for sign languages that can be searched, filtered, sorted by different sign components (such as handshapes, orientation, location, movement, etc.). However, it is a very time-consuming process, thus only a handful of sign languages have such inventories. This work proposes a process of automatically generating such inventories for sign languages by applying automatic hand detection, cropping, and clustering techniques. We applied our proposed method to a commonly used resource: the Spreadthesign online dictionary (www.spreadthesign.com), in particular to Russian Sign Language (RSL). We then manually verified the data to be able to perform classification. Thus, the proposed pipeline can serve as an alternative approach to manual annotation, and can help linguists in answering numerous research questions in relation to handshape frequencies in sign languages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mukushev-etal-2020-automatic">
<titleInfo>
<title>Automatic Classification of Handshapes in Russian Sign Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Medet</namePart>
<namePart type="family">Mukushev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alfarabi</namePart>
<namePart type="family">Imashev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vadim</namePart>
<namePart type="family">Kimmelman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anara</namePart>
<namePart type="family">Sandygulova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the LREC2020 9th Workshop on the Representation and Processing of Sign Languages: Sign Language Resources in the Service of the Language Community, Technological Challenges and Application Perspectives</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eleni</namePart>
<namePart type="family">Efthimiou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stavroula-Evita</namePart>
<namePart type="family">Fotinea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Hanke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julie</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Hochgesang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jette</namePart>
<namePart type="family">Kristoffersen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johanna</namePart>
<namePart type="family">Mesch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-54-2</identifier>
</relatedItem>
<abstract>Handshapes are one of the basic parameters of signs, and any phonological or phonetic analysis of a sign language must account for handshapes. Many sign languages have been carefully analysed by sign language linguists to create handshape inventories. This has theoretical implications, but also applied use, as it is important due to the need of generating corpora for sign languages that can be searched, filtered, sorted by different sign components (such as handshapes, orientation, location, movement, etc.). However, it is a very time-consuming process, thus only a handful of sign languages have such inventories. This work proposes a process of automatically generating such inventories for sign languages by applying automatic hand detection, cropping, and clustering techniques. We applied our proposed method to a commonly used resource: the Spreadthesign online dictionary (www.spreadthesign.com), in particular to Russian Sign Language (RSL). We then manually verified the data to be able to perform classification. Thus, the proposed pipeline can serve as an alternative approach to manual annotation, and can help linguists in answering numerous research questions in relation to handshape frequencies in sign languages.</abstract>
<identifier type="citekey">mukushev-etal-2020-automatic</identifier>
<location>
<url>https://aclanthology.org/2020.signlang-1.27/</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>165</start>
<end>170</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Classification of Handshapes in Russian Sign Language
%A Mukushev, Medet
%A Imashev, Alfarabi
%A Kimmelman, Vadim
%A Sandygulova, Anara
%Y Efthimiou, Eleni
%Y Fotinea, Stavroula-Evita
%Y Hanke, Thomas
%Y Hochgesang, Julie A.
%Y Kristoffersen, Jette
%Y Mesch, Johanna
%S Proceedings of the LREC2020 9th Workshop on the Representation and Processing of Sign Languages: Sign Language Resources in the Service of the Language Community, Technological Challenges and Application Perspectives
%D 2020
%8 May
%I European Language Resources Association (ELRA)
%C Marseille, France
%@ 979-10-95546-54-2
%G eng
%F mukushev-etal-2020-automatic
%X Handshapes are one of the basic parameters of signs, and any phonological or phonetic analysis of a sign language must account for handshapes. Many sign languages have been carefully analysed by sign language linguists to create handshape inventories. This has theoretical implications, but also applied use, as it is important due to the need of generating corpora for sign languages that can be searched, filtered, sorted by different sign components (such as handshapes, orientation, location, movement, etc.). However, it is a very time-consuming process, thus only a handful of sign languages have such inventories. This work proposes a process of automatically generating such inventories for sign languages by applying automatic hand detection, cropping, and clustering techniques. We applied our proposed method to a commonly used resource: the Spreadthesign online dictionary (www.spreadthesign.com), in particular to Russian Sign Language (RSL). We then manually verified the data to be able to perform classification. Thus, the proposed pipeline can serve as an alternative approach to manual annotation, and can help linguists in answering numerous research questions in relation to handshape frequencies in sign languages.
%U https://aclanthology.org/2020.signlang-1.27/
%P 165-170
Markdown (Informal)
[Automatic Classification of Handshapes in Russian Sign Language](https://aclanthology.org/2020.signlang-1.27/) (Mukushev et al., SignLang 2020)
ACL
- Medet Mukushev, Alfarabi Imashev, Vadim Kimmelman, and Anara Sandygulova. 2020. Automatic Classification of Handshapes in Russian Sign Language. In Proceedings of the LREC2020 9th Workshop on the Representation and Processing of Sign Languages: Sign Language Resources in the Service of the Language Community, Technological Challenges and Application Perspectives, pages 165–170, Marseille, France. European Language Resources Association (ELRA).