@inproceedings{scannell-2020-neural,
title = "Neural Models for Predicting {C}eltic Mutations",
author = "Scannell, Kevin",
editor = "Beermann, Dorothee and
Besacier, Laurent and
Sakti, Sakriani and
Soria, Claudia",
booktitle = "Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources association",
url = "https://aclanthology.org/2020.sltu-1.1",
pages = "1--8",
abstract = "The Celtic languages share a common linguistic phenomenon known as initial mutations; these consist of pronunciation and spelling changes that occur at the beginning of some words, triggered in certain semantic or syntactic contexts. Initial mutations occur quite frequently and all non-trivial NLP systems for the Celtic languages must learn to handle them properly. In this paper we describe and evaluate neural network models for predicting mutations in two of the six Celtic languages: Irish and Scottish Gaelic. We also discuss applications of these models to grammatical error detection and language modeling.",
language = "English",
ISBN = "979-10-95546-35-1",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="scannell-2020-neural">
<titleInfo>
<title>Neural Models for Predicting Celtic Mutations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Scannell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dorothee</namePart>
<namePart type="family">Beermann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Besacier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Soria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-35-1</identifier>
</relatedItem>
<abstract>The Celtic languages share a common linguistic phenomenon known as initial mutations; these consist of pronunciation and spelling changes that occur at the beginning of some words, triggered in certain semantic or syntactic contexts. Initial mutations occur quite frequently and all non-trivial NLP systems for the Celtic languages must learn to handle them properly. In this paper we describe and evaluate neural network models for predicting mutations in two of the six Celtic languages: Irish and Scottish Gaelic. We also discuss applications of these models to grammatical error detection and language modeling.</abstract>
<identifier type="citekey">scannell-2020-neural</identifier>
<location>
<url>https://aclanthology.org/2020.sltu-1.1</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>1</start>
<end>8</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Models for Predicting Celtic Mutations
%A Scannell, Kevin
%Y Beermann, Dorothee
%Y Besacier, Laurent
%Y Sakti, Sakriani
%Y Soria, Claudia
%S Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)
%D 2020
%8 May
%I European Language Resources association
%C Marseille, France
%@ 979-10-95546-35-1
%G English
%F scannell-2020-neural
%X The Celtic languages share a common linguistic phenomenon known as initial mutations; these consist of pronunciation and spelling changes that occur at the beginning of some words, triggered in certain semantic or syntactic contexts. Initial mutations occur quite frequently and all non-trivial NLP systems for the Celtic languages must learn to handle them properly. In this paper we describe and evaluate neural network models for predicting mutations in two of the six Celtic languages: Irish and Scottish Gaelic. We also discuss applications of these models to grammatical error detection and language modeling.
%U https://aclanthology.org/2020.sltu-1.1
%P 1-8
Markdown (Informal)
[Neural Models for Predicting Celtic Mutations](https://aclanthology.org/2020.sltu-1.1) (Scannell, SLTU 2020)
ACL
- Kevin Scannell. 2020. Neural Models for Predicting Celtic Mutations. In Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL), pages 1–8, Marseille, France. European Language Resources association.