@article{nishida-nakayama-2020-unsupervised,
title = "Unsupervised Discourse Constituency Parsing Using {V}iterbi {EM}",
author = "Nishida, Noriki and
Nakayama, Hideki",
editor = "Johnson, Mark and
Roark, Brian and
Nenkova, Ani",
journal = "Transactions of the Association for Computational Linguistics",
volume = "8",
year = "2020",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2020.tacl-1.15/",
doi = "10.1162/tacl_a_00312",
pages = "215--230",
abstract = "In this paper, we introduce an unsupervised discourse constituency parsing algorithm. We use Viterbi EM with a margin-based criterion to train a span-based discourse parser in an unsupervised manner. We also propose initialization methods for Viterbi training of discourse constituents based on our prior knowledge of text structures. Experimental results demonstrate that our unsupervised parser achieves comparable or even superior performance to fully supervised parsers. We also investigate discourse constituents that are learned by our method."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nishida-nakayama-2020-unsupervised">
<titleInfo>
<title>Unsupervised Discourse Constituency Parsing Using Viterbi EM</title>
</titleInfo>
<name type="personal">
<namePart type="given">Noriki</namePart>
<namePart type="family">Nishida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hideki</namePart>
<namePart type="family">Nakayama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>In this paper, we introduce an unsupervised discourse constituency parsing algorithm. We use Viterbi EM with a margin-based criterion to train a span-based discourse parser in an unsupervised manner. We also propose initialization methods for Viterbi training of discourse constituents based on our prior knowledge of text structures. Experimental results demonstrate that our unsupervised parser achieves comparable or even superior performance to fully supervised parsers. We also investigate discourse constituents that are learned by our method.</abstract>
<identifier type="citekey">nishida-nakayama-2020-unsupervised</identifier>
<identifier type="doi">10.1162/tacl_a_00312</identifier>
<location>
<url>https://aclanthology.org/2020.tacl-1.15/</url>
</location>
<part>
<date>2020</date>
<detail type="volume"><number>8</number></detail>
<extent unit="page">
<start>215</start>
<end>230</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Unsupervised Discourse Constituency Parsing Using Viterbi EM
%A Nishida, Noriki
%A Nakayama, Hideki
%J Transactions of the Association for Computational Linguistics
%D 2020
%V 8
%I MIT Press
%C Cambridge, MA
%F nishida-nakayama-2020-unsupervised
%X In this paper, we introduce an unsupervised discourse constituency parsing algorithm. We use Viterbi EM with a margin-based criterion to train a span-based discourse parser in an unsupervised manner. We also propose initialization methods for Viterbi training of discourse constituents based on our prior knowledge of text structures. Experimental results demonstrate that our unsupervised parser achieves comparable or even superior performance to fully supervised parsers. We also investigate discourse constituents that are learned by our method.
%R 10.1162/tacl_a_00312
%U https://aclanthology.org/2020.tacl-1.15/
%U https://doi.org/10.1162/tacl_a_00312
%P 215-230
Markdown (Informal)
[Unsupervised Discourse Constituency Parsing Using Viterbi EM](https://aclanthology.org/2020.tacl-1.15/) (Nishida & Nakayama, TACL 2020)
ACL