@inproceedings{mishra-2020-geolocation,
title = "Geolocation of Tweets with a {B}i{LSTM} Regression Model",
author = "Mishra, Piyush",
editor = {Zampieri, Marcos and
Nakov, Preslav and
Ljube{\v{s}}i{\'c}, Nikola and
Tiedemann, J{\"o}rg and
Scherrer, Yves},
booktitle = "Proceedings of the 7th Workshop on NLP for Similar Languages, Varieties and Dialects",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics (ICCL)",
url = "https://aclanthology.org/2020.vardial-1.27/",
pages = "283--289",
abstract = "Identifying a user`s location can be useful for recommendation systems, demographic analyses, and disaster outbreak monitoring. Although Twitter allows users to voluntarily reveal their location, such information isn`t universally available. Analyzing a tweet can provide a general estimation of a tweet location while giving insight into the dialect of the user and other linguistic markers. Such linguistic attributes can be used to provide a regional approximation of tweet origins. In this paper, we present a neural regression model that can identify the linguistic intricacies of a tweet to predict the location of the user. The final model identifies the dialect embedded in the tweet and predicts the location of the tweet."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mishra-2020-geolocation">
<titleInfo>
<title>Geolocation of Tweets with a BiLSTM Regression Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Piyush</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 7th Workshop on NLP for Similar Languages, Varieties and Dialects</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="family">Ljubešić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yves</namePart>
<namePart type="family">Scherrer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics (ICCL)</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Identifying a user‘s location can be useful for recommendation systems, demographic analyses, and disaster outbreak monitoring. Although Twitter allows users to voluntarily reveal their location, such information isn‘t universally available. Analyzing a tweet can provide a general estimation of a tweet location while giving insight into the dialect of the user and other linguistic markers. Such linguistic attributes can be used to provide a regional approximation of tweet origins. In this paper, we present a neural regression model that can identify the linguistic intricacies of a tweet to predict the location of the user. The final model identifies the dialect embedded in the tweet and predicts the location of the tweet.</abstract>
<identifier type="citekey">mishra-2020-geolocation</identifier>
<location>
<url>https://aclanthology.org/2020.vardial-1.27/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>283</start>
<end>289</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Geolocation of Tweets with a BiLSTM Regression Model
%A Mishra, Piyush
%Y Zampieri, Marcos
%Y Nakov, Preslav
%Y Ljubešić, Nikola
%Y Tiedemann, Jörg
%Y Scherrer, Yves
%S Proceedings of the 7th Workshop on NLP for Similar Languages, Varieties and Dialects
%D 2020
%8 December
%I International Committee on Computational Linguistics (ICCL)
%C Barcelona, Spain (Online)
%F mishra-2020-geolocation
%X Identifying a user‘s location can be useful for recommendation systems, demographic analyses, and disaster outbreak monitoring. Although Twitter allows users to voluntarily reveal their location, such information isn‘t universally available. Analyzing a tweet can provide a general estimation of a tweet location while giving insight into the dialect of the user and other linguistic markers. Such linguistic attributes can be used to provide a regional approximation of tweet origins. In this paper, we present a neural regression model that can identify the linguistic intricacies of a tweet to predict the location of the user. The final model identifies the dialect embedded in the tweet and predicts the location of the tweet.
%U https://aclanthology.org/2020.vardial-1.27/
%P 283-289
Markdown (Informal)
[Geolocation of Tweets with a BiLSTM Regression Model](https://aclanthology.org/2020.vardial-1.27/) (Mishra, VarDial 2020)
ACL
- Piyush Mishra. 2020. Geolocation of Tweets with a BiLSTM Regression Model. In Proceedings of the 7th Workshop on NLP for Similar Languages, Varieties and Dialects, pages 283–289, Barcelona, Spain (Online). International Committee on Computational Linguistics (ICCL).