@inproceedings{mishra-mishra-2020-scubed,
title = "Scubed at 3{C} task A - A simple baseline for citation context purpose classification",
author = "Mishra, Shubhanshu and
Mishra, Sudhanshu",
editor = "Knoth, Petr and
Stahl, Christopher and
Gyawali, Bikash and
Pride, David and
Kunnath, Suchetha N. and
Herrmannova, Drahomira",
booktitle = "Proceedings of the 8th International Workshop on Mining Scientific Publications",
month = "05 " # aug,
year = "2020",
address = "Wuhan, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wosp-1.9/",
pages = "59--64",
abstract = "We present our team Scubed`s approach in the {\textquoteleft}3C' Citation Context Classification Task, Subtask A, citation context purpose classification. Our approach relies on text based features transformed via tf-idf features followed by training a variety of models which are capable of capturing non-linear features. Our best model on the leaderboard is a multi-layer perceptron which also performs best during our rerun. Our submission code for replicating experiments is at: \url{https://github.com/napsternxg/Citation_Context_Classification}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mishra-mishra-2020-scubed">
<titleInfo>
<title>Scubed at 3C task A - A simple baseline for citation context purpose classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shubhanshu</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudhanshu</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05 aug</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th International Workshop on Mining Scientific Publications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Petr</namePart>
<namePart type="family">Knoth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Stahl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bikash</namePart>
<namePart type="family">Gyawali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Pride</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suchetha</namePart>
<namePart type="given">N</namePart>
<namePart type="family">Kunnath</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Drahomira</namePart>
<namePart type="family">Herrmannova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Wuhan, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present our team Scubed‘s approach in the ‘3C’ Citation Context Classification Task, Subtask A, citation context purpose classification. Our approach relies on text based features transformed via tf-idf features followed by training a variety of models which are capable of capturing non-linear features. Our best model on the leaderboard is a multi-layer perceptron which also performs best during our rerun. Our submission code for replicating experiments is at: https://github.com/napsternxg/Citation_Context_Classification.</abstract>
<identifier type="citekey">mishra-mishra-2020-scubed</identifier>
<location>
<url>https://aclanthology.org/2020.wosp-1.9/</url>
</location>
<part>
<date>2020-05 aug</date>
<extent unit="page">
<start>59</start>
<end>64</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Scubed at 3C task A - A simple baseline for citation context purpose classification
%A Mishra, Shubhanshu
%A Mishra, Sudhanshu
%Y Knoth, Petr
%Y Stahl, Christopher
%Y Gyawali, Bikash
%Y Pride, David
%Y Kunnath, Suchetha N.
%Y Herrmannova, Drahomira
%S Proceedings of the 8th International Workshop on Mining Scientific Publications
%D 2020
%8 05 aug
%I Association for Computational Linguistics
%C Wuhan, China
%F mishra-mishra-2020-scubed
%X We present our team Scubed‘s approach in the ‘3C’ Citation Context Classification Task, Subtask A, citation context purpose classification. Our approach relies on text based features transformed via tf-idf features followed by training a variety of models which are capable of capturing non-linear features. Our best model on the leaderboard is a multi-layer perceptron which also performs best during our rerun. Our submission code for replicating experiments is at: https://github.com/napsternxg/Citation_Context_Classification.
%U https://aclanthology.org/2020.wosp-1.9/
%P 59-64
Markdown (Informal)
[Scubed at 3C task A - A simple baseline for citation context purpose classification](https://aclanthology.org/2020.wosp-1.9/) (Mishra & Mishra, WOSP 2020)
ACL