@inproceedings{ma-etal-2021-sent,
title = "{SENT}: {S}entence-level Distant Relation Extraction via Negative Training",
author = "Ma, Ruotian and
Gui, Tao and
Li, Linyang and
Zhang, Qi and
Huang, Xuanjing and
Zhou, Yaqian",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.484",
doi = "10.18653/v1/2021.acl-long.484",
pages = "6201--6213",
abstract = "Distant supervision for relation extraction provides uniform bag labels for each sentence inside the bag, while accurate sentence labels are important for downstream applications that need the exact relation type. Directly using bag labels for sentence-level training will introduce much noise, thus severely degrading performance. In this work, we propose the use of negative training (NT), in which a model is trained using complementary labels regarding that {``}the instance does not belong to these complementary labels{''}. Since the probability of selecting a true label as a complementary label is low, NT provides less noisy information. Furthermore, the model trained with NT is able to separate the noisy data from the training data. Based on NT, we propose a sentence-level framework, SENT, for distant relation extraction. SENT not only filters the noisy data to construct a cleaner dataset, but also performs a re-labeling process to transform the noisy data into useful training data, thus further benefiting the model{'}s performance. Experimental results show the significant improvement of the proposed method over previous methods on sentence-level evaluation and de-noise effect.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ma-etal-2021-sent">
<titleInfo>
<title>SENT: Sentence-level Distant Relation Extraction via Negative Training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruotian</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tao</namePart>
<namePart type="family">Gui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linyang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaqian</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Distant supervision for relation extraction provides uniform bag labels for each sentence inside the bag, while accurate sentence labels are important for downstream applications that need the exact relation type. Directly using bag labels for sentence-level training will introduce much noise, thus severely degrading performance. In this work, we propose the use of negative training (NT), in which a model is trained using complementary labels regarding that “the instance does not belong to these complementary labels”. Since the probability of selecting a true label as a complementary label is low, NT provides less noisy information. Furthermore, the model trained with NT is able to separate the noisy data from the training data. Based on NT, we propose a sentence-level framework, SENT, for distant relation extraction. SENT not only filters the noisy data to construct a cleaner dataset, but also performs a re-labeling process to transform the noisy data into useful training data, thus further benefiting the model’s performance. Experimental results show the significant improvement of the proposed method over previous methods on sentence-level evaluation and de-noise effect.</abstract>
<identifier type="citekey">ma-etal-2021-sent</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.484</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.484</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>6201</start>
<end>6213</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SENT: Sentence-level Distant Relation Extraction via Negative Training
%A Ma, Ruotian
%A Gui, Tao
%A Li, Linyang
%A Zhang, Qi
%A Huang, Xuanjing
%A Zhou, Yaqian
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F ma-etal-2021-sent
%X Distant supervision for relation extraction provides uniform bag labels for each sentence inside the bag, while accurate sentence labels are important for downstream applications that need the exact relation type. Directly using bag labels for sentence-level training will introduce much noise, thus severely degrading performance. In this work, we propose the use of negative training (NT), in which a model is trained using complementary labels regarding that “the instance does not belong to these complementary labels”. Since the probability of selecting a true label as a complementary label is low, NT provides less noisy information. Furthermore, the model trained with NT is able to separate the noisy data from the training data. Based on NT, we propose a sentence-level framework, SENT, for distant relation extraction. SENT not only filters the noisy data to construct a cleaner dataset, but also performs a re-labeling process to transform the noisy data into useful training data, thus further benefiting the model’s performance. Experimental results show the significant improvement of the proposed method over previous methods on sentence-level evaluation and de-noise effect.
%R 10.18653/v1/2021.acl-long.484
%U https://aclanthology.org/2021.acl-long.484
%U https://doi.org/10.18653/v1/2021.acl-long.484
%P 6201-6213
Markdown (Informal)
[SENT: Sentence-level Distant Relation Extraction via Negative Training](https://aclanthology.org/2021.acl-long.484) (Ma et al., ACL-IJCNLP 2021)
ACL
- Ruotian Ma, Tao Gui, Linyang Li, Qi Zhang, Xuanjing Huang, and Yaqian Zhou. 2021. SENT: Sentence-level Distant Relation Extraction via Negative Training. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 6201–6213, Online. Association for Computational Linguistics.