@inproceedings{yang-etal-2021-weakly,
title = "Weakly-Supervised Methods for Suicide Risk Assessment: Role of Related Domains",
author = "Yang, Chenghao and
Zhang, Yudong and
Muresan, Smaranda",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-short.133/",
doi = "10.18653/v1/2021.acl-short.133",
pages = "1049--1057",
abstract = "Social media has become a valuable resource for the study of suicidal ideation and the assessment of suicide risk. Among social media platforms, Reddit has emerged as the most promising one due to its anonymity and its focus on topic-based communities (subreddits) that can be indicative of someone`s state of mind or interest regarding mental health disorders such as r/SuicideWatch, r/Anxiety, r/depression. A challenge for previous work on suicide risk assessment has been the small amount of labeled data. We propose an empirical investigation into several classes of weakly-supervised approaches, and show that using pseudo-labeling based on related issues around mental health (e.g., anxiety, depression) helps improve model performance for suicide risk assessment."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2021-weakly">
<titleInfo>
<title>Weakly-Supervised Methods for Suicide Risk Assessment: Role of Related Domains</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chenghao</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yudong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Social media has become a valuable resource for the study of suicidal ideation and the assessment of suicide risk. Among social media platforms, Reddit has emerged as the most promising one due to its anonymity and its focus on topic-based communities (subreddits) that can be indicative of someone‘s state of mind or interest regarding mental health disorders such as r/SuicideWatch, r/Anxiety, r/depression. A challenge for previous work on suicide risk assessment has been the small amount of labeled data. We propose an empirical investigation into several classes of weakly-supervised approaches, and show that using pseudo-labeling based on related issues around mental health (e.g., anxiety, depression) helps improve model performance for suicide risk assessment.</abstract>
<identifier type="citekey">yang-etal-2021-weakly</identifier>
<identifier type="doi">10.18653/v1/2021.acl-short.133</identifier>
<location>
<url>https://aclanthology.org/2021.acl-short.133/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>1049</start>
<end>1057</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Weakly-Supervised Methods for Suicide Risk Assessment: Role of Related Domains
%A Yang, Chenghao
%A Zhang, Yudong
%A Muresan, Smaranda
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F yang-etal-2021-weakly
%X Social media has become a valuable resource for the study of suicidal ideation and the assessment of suicide risk. Among social media platforms, Reddit has emerged as the most promising one due to its anonymity and its focus on topic-based communities (subreddits) that can be indicative of someone‘s state of mind or interest regarding mental health disorders such as r/SuicideWatch, r/Anxiety, r/depression. A challenge for previous work on suicide risk assessment has been the small amount of labeled data. We propose an empirical investigation into several classes of weakly-supervised approaches, and show that using pseudo-labeling based on related issues around mental health (e.g., anxiety, depression) helps improve model performance for suicide risk assessment.
%R 10.18653/v1/2021.acl-short.133
%U https://aclanthology.org/2021.acl-short.133/
%U https://doi.org/10.18653/v1/2021.acl-short.133
%P 1049-1057
Markdown (Informal)
[Weakly-Supervised Methods for Suicide Risk Assessment: Role of Related Domains](https://aclanthology.org/2021.acl-short.133/) (Yang et al., ACL-IJCNLP 2021)
ACL
- Chenghao Yang, Yudong Zhang, and Smaranda Muresan. 2021. Weakly-Supervised Methods for Suicide Risk Assessment: Role of Related Domains. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 1049–1057, Online. Association for Computational Linguistics.