@inproceedings{hollenstein-beinborn-2021-relative,
title = "Relative Importance in Sentence Processing",
author = "Hollenstein, Nora and
Beinborn, Lisa",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-short.19/",
doi = "10.18653/v1/2021.acl-short.19",
pages = "141--150",
abstract = "Determining the relative importance of the elements in a sentence is a key factor for effortless natural language understanding. For human language processing, we can approximate patterns of relative importance by measuring reading fixations using eye-tracking technology. In neural language models, gradient-based saliency methods indicate the relative importance of a token for the target objective. In this work, we compare patterns of relative importance in English language processing by humans and models and analyze the underlying linguistic patterns. We find that human processing patterns in English correlate strongly with saliency-based importance in language models and not with attention-based importance. Our results indicate that saliency could be a cognitively more plausible metric for interpreting neural language models. The code is available on github: \url{https://github.com/beinborn/relative_importance}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hollenstein-beinborn-2021-relative">
<titleInfo>
<title>Relative Importance in Sentence Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Hollenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lisa</namePart>
<namePart type="family">Beinborn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Determining the relative importance of the elements in a sentence is a key factor for effortless natural language understanding. For human language processing, we can approximate patterns of relative importance by measuring reading fixations using eye-tracking technology. In neural language models, gradient-based saliency methods indicate the relative importance of a token for the target objective. In this work, we compare patterns of relative importance in English language processing by humans and models and analyze the underlying linguistic patterns. We find that human processing patterns in English correlate strongly with saliency-based importance in language models and not with attention-based importance. Our results indicate that saliency could be a cognitively more plausible metric for interpreting neural language models. The code is available on github: https://github.com/beinborn/relative_importance.</abstract>
<identifier type="citekey">hollenstein-beinborn-2021-relative</identifier>
<identifier type="doi">10.18653/v1/2021.acl-short.19</identifier>
<location>
<url>https://aclanthology.org/2021.acl-short.19/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>141</start>
<end>150</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Relative Importance in Sentence Processing
%A Hollenstein, Nora
%A Beinborn, Lisa
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F hollenstein-beinborn-2021-relative
%X Determining the relative importance of the elements in a sentence is a key factor for effortless natural language understanding. For human language processing, we can approximate patterns of relative importance by measuring reading fixations using eye-tracking technology. In neural language models, gradient-based saliency methods indicate the relative importance of a token for the target objective. In this work, we compare patterns of relative importance in English language processing by humans and models and analyze the underlying linguistic patterns. We find that human processing patterns in English correlate strongly with saliency-based importance in language models and not with attention-based importance. Our results indicate that saliency could be a cognitively more plausible metric for interpreting neural language models. The code is available on github: https://github.com/beinborn/relative_importance.
%R 10.18653/v1/2021.acl-short.19
%U https://aclanthology.org/2021.acl-short.19/
%U https://doi.org/10.18653/v1/2021.acl-short.19
%P 141-150
Markdown (Informal)
[Relative Importance in Sentence Processing](https://aclanthology.org/2021.acl-short.19/) (Hollenstein & Beinborn, ACL-IJCNLP 2021)
ACL
- Nora Hollenstein and Lisa Beinborn. 2021. Relative Importance in Sentence Processing. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 141–150, Online. Association for Computational Linguistics.