@inproceedings{ganesan-etal-2021-locality,
title = "Locality Preserving Loss: Neighbors that Live together, Align together",
author = "Ganesan, Ashwinkumar and
Ferraro, Francis and
Oates, Tim",
editor = "Ben-David, Eyal and
Cohen, Shay and
McDonald, Ryan and
Plank, Barbara and
Reichart, Roi and
Rotman, Guy and
Ziser, Yftah",
booktitle = "Proceedings of the Second Workshop on Domain Adaptation for NLP",
month = apr,
year = "2021",
address = "Kyiv, Ukraine",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.adaptnlp-1.13/",
pages = "122--139",
abstract = "We present a locality preserving loss (LPL) that improves the alignment between vector space embeddings while separating uncorrelated representations. Given two pretrained embedding manifolds, LPL optimizes a model to project an embedding and maintain its local neighborhood while aligning one manifold to another. This reduces the overall size of the dataset required to align the two in tasks such as crosslingual word alignment. We show that the LPL-based alignment between input vector spaces acts as a regularizer, leading to better and consistent accuracy than the baseline, especially when the size of the training set is small. We demonstrate the effectiveness of LPL-optimized alignment on semantic text similarity (STS), natural language inference (SNLI), multi-genre language inference (MNLI) and cross-lingual word alignment (CLA) showing consistent improvements, finding up to 16{\%} improvement over our baseline in lower resource settings."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ganesan-etal-2021-locality">
<titleInfo>
<title>Locality Preserving Loss: Neighbors that Live together, Align together</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ashwinkumar</namePart>
<namePart type="family">Ganesan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Ferraro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Oates</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Domain Adaptation for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eyal</namePart>
<namePart type="family">Ben-David</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shay</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">McDonald</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roi</namePart>
<namePart type="family">Reichart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Rotman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yftah</namePart>
<namePart type="family">Ziser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Kyiv, Ukraine</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a locality preserving loss (LPL) that improves the alignment between vector space embeddings while separating uncorrelated representations. Given two pretrained embedding manifolds, LPL optimizes a model to project an embedding and maintain its local neighborhood while aligning one manifold to another. This reduces the overall size of the dataset required to align the two in tasks such as crosslingual word alignment. We show that the LPL-based alignment between input vector spaces acts as a regularizer, leading to better and consistent accuracy than the baseline, especially when the size of the training set is small. We demonstrate the effectiveness of LPL-optimized alignment on semantic text similarity (STS), natural language inference (SNLI), multi-genre language inference (MNLI) and cross-lingual word alignment (CLA) showing consistent improvements, finding up to 16% improvement over our baseline in lower resource settings.</abstract>
<identifier type="citekey">ganesan-etal-2021-locality</identifier>
<location>
<url>https://aclanthology.org/2021.adaptnlp-1.13/</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>122</start>
<end>139</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Locality Preserving Loss: Neighbors that Live together, Align together
%A Ganesan, Ashwinkumar
%A Ferraro, Francis
%A Oates, Tim
%Y Ben-David, Eyal
%Y Cohen, Shay
%Y McDonald, Ryan
%Y Plank, Barbara
%Y Reichart, Roi
%Y Rotman, Guy
%Y Ziser, Yftah
%S Proceedings of the Second Workshop on Domain Adaptation for NLP
%D 2021
%8 April
%I Association for Computational Linguistics
%C Kyiv, Ukraine
%F ganesan-etal-2021-locality
%X We present a locality preserving loss (LPL) that improves the alignment between vector space embeddings while separating uncorrelated representations. Given two pretrained embedding manifolds, LPL optimizes a model to project an embedding and maintain its local neighborhood while aligning one manifold to another. This reduces the overall size of the dataset required to align the two in tasks such as crosslingual word alignment. We show that the LPL-based alignment between input vector spaces acts as a regularizer, leading to better and consistent accuracy than the baseline, especially when the size of the training set is small. We demonstrate the effectiveness of LPL-optimized alignment on semantic text similarity (STS), natural language inference (SNLI), multi-genre language inference (MNLI) and cross-lingual word alignment (CLA) showing consistent improvements, finding up to 16% improvement over our baseline in lower resource settings.
%U https://aclanthology.org/2021.adaptnlp-1.13/
%P 122-139
Markdown (Informal)
[Locality Preserving Loss: Neighbors that Live together, Align together](https://aclanthology.org/2021.adaptnlp-1.13/) (Ganesan et al., AdaptNLP 2021)
ACL