@inproceedings{dacanay-etal-2021-detail,
title = "The More Detail, the Better? {--} Investigating the Effects of Semantic Ontology Specificity on Vector Semantic Classification with a {P}lains {C}ree / n{\^e}hiyaw{\^e}win Dictionary",
author = "Dacanay, Daniel and
Harrigan, Atticus and
Wolvengrey, Arok and
Arppe, Antti",
editor = "Mager, Manuel and
Oncevay, Arturo and
Rios, Annette and
Ruiz, Ivan Vladimir Meza and
Palmer, Alexis and
Neubig, Graham and
Kann, Katharina",
booktitle = "Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.americasnlp-1.15/",
doi = "10.18653/v1/2021.americasnlp-1.15",
pages = "143--152",
abstract = "One problem in the task of automatic semantic classification is the problem of determining the level on which to group lexical items. This is often accomplished using pre-made, hierarchical semantic ontologies. The following investigation explores the computational assignment of semantic classifications on the contents of a dictionary of n{\^e}hiyaw{\^e}win / Plains Cree (ISO: crk, Algonquian, Western Canada and United States), using a semantic vector space model, and following two semantic ontologies, WordNet and SIL`s Rapid Words, and compares how these computational results compare to manual classifications with the same two ontologies."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dacanay-etal-2021-detail">
<titleInfo>
<title>The More Detail, the Better? – Investigating the Effects of Semantic Ontology Specificity on Vector Semantic Classification with a Plains Cree / nêhiyawêwin Dictionary</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Dacanay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atticus</namePart>
<namePart type="family">Harrigan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arok</namePart>
<namePart type="family">Wolvengrey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antti</namePart>
<namePart type="family">Arppe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas</title>
</titleInfo>
<name type="personal">
<namePart type="given">Manuel</namePart>
<namePart type="family">Mager</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arturo</namePart>
<namePart type="family">Oncevay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annette</namePart>
<namePart type="family">Rios</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="given">Meza</namePart>
<namePart type="family">Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katharina</namePart>
<namePart type="family">Kann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>One problem in the task of automatic semantic classification is the problem of determining the level on which to group lexical items. This is often accomplished using pre-made, hierarchical semantic ontologies. The following investigation explores the computational assignment of semantic classifications on the contents of a dictionary of nêhiyawêwin / Plains Cree (ISO: crk, Algonquian, Western Canada and United States), using a semantic vector space model, and following two semantic ontologies, WordNet and SIL‘s Rapid Words, and compares how these computational results compare to manual classifications with the same two ontologies.</abstract>
<identifier type="citekey">dacanay-etal-2021-detail</identifier>
<identifier type="doi">10.18653/v1/2021.americasnlp-1.15</identifier>
<location>
<url>https://aclanthology.org/2021.americasnlp-1.15/</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>143</start>
<end>152</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The More Detail, the Better? – Investigating the Effects of Semantic Ontology Specificity on Vector Semantic Classification with a Plains Cree / nêhiyawêwin Dictionary
%A Dacanay, Daniel
%A Harrigan, Atticus
%A Wolvengrey, Arok
%A Arppe, Antti
%Y Mager, Manuel
%Y Oncevay, Arturo
%Y Rios, Annette
%Y Ruiz, Ivan Vladimir Meza
%Y Palmer, Alexis
%Y Neubig, Graham
%Y Kann, Katharina
%S Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F dacanay-etal-2021-detail
%X One problem in the task of automatic semantic classification is the problem of determining the level on which to group lexical items. This is often accomplished using pre-made, hierarchical semantic ontologies. The following investigation explores the computational assignment of semantic classifications on the contents of a dictionary of nêhiyawêwin / Plains Cree (ISO: crk, Algonquian, Western Canada and United States), using a semantic vector space model, and following two semantic ontologies, WordNet and SIL‘s Rapid Words, and compares how these computational results compare to manual classifications with the same two ontologies.
%R 10.18653/v1/2021.americasnlp-1.15
%U https://aclanthology.org/2021.americasnlp-1.15/
%U https://doi.org/10.18653/v1/2021.americasnlp-1.15
%P 143-152
Markdown (Informal)
[The More Detail, the Better? – Investigating the Effects of Semantic Ontology Specificity on Vector Semantic Classification with a Plains Cree / nêhiyawêwin Dictionary](https://aclanthology.org/2021.americasnlp-1.15/) (Dacanay et al., AmericasNLP 2021)
ACL