@inproceedings{dai-etal-2021-bdkg,
title = "{BDKG} at {MEDIQA} 2021: System Report for the Radiology Report Summarization Task",
author = "Dai, Songtai and
Wang, Quan and
Lyu, Yajuan and
Zhu, Yong",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.bionlp-1.11/",
doi = "10.18653/v1/2021.bionlp-1.11",
pages = "103--111",
abstract = "This paper presents our winning system at the Radiology Report Summarization track of the MEDIQA 2021 shared task. Radiology report summarization automatically summarizes radiology findings into free-text impressions. This year`s task emphasizes the generalization and transfer ability of participating systems. Our system is built upon a pre-trained Transformer encoder-decoder architecture, i.e., PEGASUS, deployed with an additional domain adaptation module to particularly handle the transfer and generalization issue. Heuristics like ensemble and text normalization are also used. Our system is conceptually simple yet highly effective, achieving a ROUGE-2 score of 0.436 on test set and ranked the 1st place among all participating systems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dai-etal-2021-bdkg">
<titleInfo>
<title>BDKG at MEDIQA 2021: System Report for the Radiology Report Summarization Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Songtai</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yajuan</namePart>
<namePart type="family">Lyu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yong</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Workshop on Biomedical Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our winning system at the Radiology Report Summarization track of the MEDIQA 2021 shared task. Radiology report summarization automatically summarizes radiology findings into free-text impressions. This year‘s task emphasizes the generalization and transfer ability of participating systems. Our system is built upon a pre-trained Transformer encoder-decoder architecture, i.e., PEGASUS, deployed with an additional domain adaptation module to particularly handle the transfer and generalization issue. Heuristics like ensemble and text normalization are also used. Our system is conceptually simple yet highly effective, achieving a ROUGE-2 score of 0.436 on test set and ranked the 1st place among all participating systems.</abstract>
<identifier type="citekey">dai-etal-2021-bdkg</identifier>
<identifier type="doi">10.18653/v1/2021.bionlp-1.11</identifier>
<location>
<url>https://aclanthology.org/2021.bionlp-1.11/</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>103</start>
<end>111</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BDKG at MEDIQA 2021: System Report for the Radiology Report Summarization Task
%A Dai, Songtai
%A Wang, Quan
%A Lyu, Yajuan
%A Zhu, Yong
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 20th Workshop on Biomedical Language Processing
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F dai-etal-2021-bdkg
%X This paper presents our winning system at the Radiology Report Summarization track of the MEDIQA 2021 shared task. Radiology report summarization automatically summarizes radiology findings into free-text impressions. This year‘s task emphasizes the generalization and transfer ability of participating systems. Our system is built upon a pre-trained Transformer encoder-decoder architecture, i.e., PEGASUS, deployed with an additional domain adaptation module to particularly handle the transfer and generalization issue. Heuristics like ensemble and text normalization are also used. Our system is conceptually simple yet highly effective, achieving a ROUGE-2 score of 0.436 on test set and ranked the 1st place among all participating systems.
%R 10.18653/v1/2021.bionlp-1.11
%U https://aclanthology.org/2021.bionlp-1.11/
%U https://doi.org/10.18653/v1/2021.bionlp-1.11
%P 103-111
Markdown (Informal)
[BDKG at MEDIQA 2021: System Report for the Radiology Report Summarization Task](https://aclanthology.org/2021.bionlp-1.11/) (Dai et al., BioNLP 2021)
ACL