@inproceedings{muller-etal-2021-word,
title = "Word-Level Alignment of Paper Documents with their Electronic Full-Text Counterparts",
author = {M{\"u}ller, Mark-Christoph and
Ghosh, Sucheta and
Wittig, Ulrike and
Rey, Maja},
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.bionlp-1.19/",
doi = "10.18653/v1/2021.bionlp-1.19",
pages = "168--179",
abstract = "We describe a simple procedure for the automatic creation of word-level alignments between printed documents and their respective full-text versions. The procedure is unsupervised, uses standard, off-the-shelf components only, and reaches an F-score of 85.01 in the basic setup and up to 86.63 when using pre- and post-processing. Potential areas of application are manual database curation (incl. document triage) and biomedical expression OCR."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="muller-etal-2021-word">
<titleInfo>
<title>Word-Level Alignment of Paper Documents with their Electronic Full-Text Counterparts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mark-Christoph</namePart>
<namePart type="family">Müller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sucheta</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ulrike</namePart>
<namePart type="family">Wittig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maja</namePart>
<namePart type="family">Rey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Workshop on Biomedical Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe a simple procedure for the automatic creation of word-level alignments between printed documents and their respective full-text versions. The procedure is unsupervised, uses standard, off-the-shelf components only, and reaches an F-score of 85.01 in the basic setup and up to 86.63 when using pre- and post-processing. Potential areas of application are manual database curation (incl. document triage) and biomedical expression OCR.</abstract>
<identifier type="citekey">muller-etal-2021-word</identifier>
<identifier type="doi">10.18653/v1/2021.bionlp-1.19</identifier>
<location>
<url>https://aclanthology.org/2021.bionlp-1.19/</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>168</start>
<end>179</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Word-Level Alignment of Paper Documents with their Electronic Full-Text Counterparts
%A Müller, Mark-Christoph
%A Ghosh, Sucheta
%A Wittig, Ulrike
%A Rey, Maja
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 20th Workshop on Biomedical Language Processing
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F muller-etal-2021-word
%X We describe a simple procedure for the automatic creation of word-level alignments between printed documents and their respective full-text versions. The procedure is unsupervised, uses standard, off-the-shelf components only, and reaches an F-score of 85.01 in the basic setup and up to 86.63 when using pre- and post-processing. Potential areas of application are manual database curation (incl. document triage) and biomedical expression OCR.
%R 10.18653/v1/2021.bionlp-1.19
%U https://aclanthology.org/2021.bionlp-1.19/
%U https://doi.org/10.18653/v1/2021.bionlp-1.19
%P 168-179
Markdown (Informal)
[Word-Level Alignment of Paper Documents with their Electronic Full-Text Counterparts](https://aclanthology.org/2021.bionlp-1.19/) (Müller et al., BioNLP 2021)
ACL