@inproceedings{lietard-etal-2021-language,
title = "Do Language Models Know the Way to {R}ome?",
author = "Li{\'e}tard, Bastien and
Abdou, Mostafa and
S{\o}gaard, Anders",
editor = "Bastings, Jasmijn and
Belinkov, Yonatan and
Dupoux, Emmanuel and
Giulianelli, Mario and
Hupkes, Dieuwke and
Pinter, Yuval and
Sajjad, Hassan",
booktitle = "Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.blackboxnlp-1.40",
doi = "10.18653/v1/2021.blackboxnlp-1.40",
pages = "510--517",
abstract = "The global geometry of language models is important for a range of applications, but language model probes tend to evaluate rather local relations, for which ground truths are easily obtained. In this paper we exploit the fact that in geography, ground truths are available beyond local relations. In a series of experiments, we evaluate the extent to which language model representations of city and country names are isomorphic to real-world geography, e.g., if you tell a language model where Paris and Berlin are, does it know the way to Rome? We find that language models generally encode limited geographic information, but with larger models performing the best, suggesting that geographic knowledge \textit{can} be induced from higher-order co-occurrence statistics.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lietard-etal-2021-language">
<titleInfo>
<title>Do Language Models Know the Way to Rome?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bastien</namePart>
<namePart type="family">Liétard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mostafa</namePart>
<namePart type="family">Abdou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jasmijn</namePart>
<namePart type="family">Bastings</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Belinkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emmanuel</namePart>
<namePart type="family">Dupoux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mario</namePart>
<namePart type="family">Giulianelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dieuwke</namePart>
<namePart type="family">Hupkes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuval</namePart>
<namePart type="family">Pinter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hassan</namePart>
<namePart type="family">Sajjad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The global geometry of language models is important for a range of applications, but language model probes tend to evaluate rather local relations, for which ground truths are easily obtained. In this paper we exploit the fact that in geography, ground truths are available beyond local relations. In a series of experiments, we evaluate the extent to which language model representations of city and country names are isomorphic to real-world geography, e.g., if you tell a language model where Paris and Berlin are, does it know the way to Rome? We find that language models generally encode limited geographic information, but with larger models performing the best, suggesting that geographic knowledge can be induced from higher-order co-occurrence statistics.</abstract>
<identifier type="citekey">lietard-etal-2021-language</identifier>
<identifier type="doi">10.18653/v1/2021.blackboxnlp-1.40</identifier>
<location>
<url>https://aclanthology.org/2021.blackboxnlp-1.40</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>510</start>
<end>517</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Do Language Models Know the Way to Rome?
%A Liétard, Bastien
%A Abdou, Mostafa
%A Søgaard, Anders
%Y Bastings, Jasmijn
%Y Belinkov, Yonatan
%Y Dupoux, Emmanuel
%Y Giulianelli, Mario
%Y Hupkes, Dieuwke
%Y Pinter, Yuval
%Y Sajjad, Hassan
%S Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F lietard-etal-2021-language
%X The global geometry of language models is important for a range of applications, but language model probes tend to evaluate rather local relations, for which ground truths are easily obtained. In this paper we exploit the fact that in geography, ground truths are available beyond local relations. In a series of experiments, we evaluate the extent to which language model representations of city and country names are isomorphic to real-world geography, e.g., if you tell a language model where Paris and Berlin are, does it know the way to Rome? We find that language models generally encode limited geographic information, but with larger models performing the best, suggesting that geographic knowledge can be induced from higher-order co-occurrence statistics.
%R 10.18653/v1/2021.blackboxnlp-1.40
%U https://aclanthology.org/2021.blackboxnlp-1.40
%U https://doi.org/10.18653/v1/2021.blackboxnlp-1.40
%P 510-517
Markdown (Informal)
[Do Language Models Know the Way to Rome?](https://aclanthology.org/2021.blackboxnlp-1.40) (Liétard et al., BlackboxNLP 2021)
ACL
- Bastien Liétard, Mostafa Abdou, and Anders Søgaard. 2021. Do Language Models Know the Way to Rome?. In Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 510–517, Punta Cana, Dominican Republic. Association for Computational Linguistics.