@inproceedings{jin-etal-2021-rong,
title = "融合外部知识的开放域复述模板获取方法(An Open Domain Paraphrasing Template Acquisition Method Based on External Knowledge)",
author = "Jin, Bo and
Liu, Mingtong and
Zhang, Yujie and
Xu, Jinan and
Chen, Yufeng",
editor = "Li, Sheng and
Sun, Maosong and
Liu, Yang and
Wu, Hua and
Liu, Kang and
Che, Wanxiang and
He, Shizhu and
Rao, Gaoqi",
booktitle = "Proceedings of the 20th Chinese National Conference on Computational Linguistics",
month = aug,
year = "2021",
address = "Huhhot, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2021.ccl-1.68/",
pages = "758--768",
language = "zho",
abstract = "如何挖掘语言资源中丰富的复述模板,是复述研究中的一项重要任务。已有方法在人工给定种子实体对的基础上,利用实体关系,通过自举迭代方式,从开放域获取复述模板,规避对平行语料或可比语料的依赖,但是该方法需人工给定实体对,实体关系受限;在迭代过程中语义会发生偏移,影响获取质量。针对这些问题,我们考虑知识库中包含描述特定语义关系的实体对(即关系三元组),提出融合外部知识的开放域复述模板自动获取方法。首先,将关系三元组与开放域文本对齐,获取关系对应文本,并将文本中语义丰富部分泛化成变量槽,获取关系模板;接着设计模板表示方法,本文利用预训练语言模型,在模板表示中融合变量槽语义;最后,根据获得的模板表示,设计自动聚类与筛选方法,获取高精度的复述模板。在融合自动评测与人工评测的评价方法下,实验结果表明,本文提出的方法实现了在开放域数据上复述模板的自动泛化与获取,能够获得质量高、语义一致的复述模板。"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jin-etal-2021-rong">
<titleInfo>
<title>融合外部知识的开放域复述模板获取方法(An Open Domain Paraphrasing Template Acquisition Method Based on External Knowledge)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingtong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yujie</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yufeng</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 20th Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sheng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shizhu</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaoqi</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Huhhot, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>如何挖掘语言资源中丰富的复述模板,是复述研究中的一项重要任务。已有方法在人工给定种子实体对的基础上,利用实体关系,通过自举迭代方式,从开放域获取复述模板,规避对平行语料或可比语料的依赖,但是该方法需人工给定实体对,实体关系受限;在迭代过程中语义会发生偏移,影响获取质量。针对这些问题,我们考虑知识库中包含描述特定语义关系的实体对(即关系三元组),提出融合外部知识的开放域复述模板自动获取方法。首先,将关系三元组与开放域文本对齐,获取关系对应文本,并将文本中语义丰富部分泛化成变量槽,获取关系模板;接着设计模板表示方法,本文利用预训练语言模型,在模板表示中融合变量槽语义;最后,根据获得的模板表示,设计自动聚类与筛选方法,获取高精度的复述模板。在融合自动评测与人工评测的评价方法下,实验结果表明,本文提出的方法实现了在开放域数据上复述模板的自动泛化与获取,能够获得质量高、语义一致的复述模板。</abstract>
<identifier type="citekey">jin-etal-2021-rong</identifier>
<location>
<url>https://aclanthology.org/2021.ccl-1.68/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>758</start>
<end>768</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 融合外部知识的开放域复述模板获取方法(An Open Domain Paraphrasing Template Acquisition Method Based on External Knowledge)
%A Jin, Bo
%A Liu, Mingtong
%A Zhang, Yujie
%A Xu, Jinan
%A Chen, Yufeng
%Y Li, Sheng
%Y Sun, Maosong
%Y Liu, Yang
%Y Wu, Hua
%Y Liu, Kang
%Y Che, Wanxiang
%Y He, Shizhu
%Y Rao, Gaoqi
%S Proceedings of the 20th Chinese National Conference on Computational Linguistics
%D 2021
%8 August
%I Chinese Information Processing Society of China
%C Huhhot, China
%G zho
%F jin-etal-2021-rong
%X 如何挖掘语言资源中丰富的复述模板,是复述研究中的一项重要任务。已有方法在人工给定种子实体对的基础上,利用实体关系,通过自举迭代方式,从开放域获取复述模板,规避对平行语料或可比语料的依赖,但是该方法需人工给定实体对,实体关系受限;在迭代过程中语义会发生偏移,影响获取质量。针对这些问题,我们考虑知识库中包含描述特定语义关系的实体对(即关系三元组),提出融合外部知识的开放域复述模板自动获取方法。首先,将关系三元组与开放域文本对齐,获取关系对应文本,并将文本中语义丰富部分泛化成变量槽,获取关系模板;接着设计模板表示方法,本文利用预训练语言模型,在模板表示中融合变量槽语义;最后,根据获得的模板表示,设计自动聚类与筛选方法,获取高精度的复述模板。在融合自动评测与人工评测的评价方法下,实验结果表明,本文提出的方法实现了在开放域数据上复述模板的自动泛化与获取,能够获得质量高、语义一致的复述模板。
%U https://aclanthology.org/2021.ccl-1.68/
%P 758-768
Markdown (Informal)
[融合外部知识的开放域复述模板获取方法(An Open Domain Paraphrasing Template Acquisition Method Based on External Knowledge)](https://aclanthology.org/2021.ccl-1.68/) (Jin et al., CCL 2021)
ACL